OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 18 — Aug. 29, 2011
  • pp: 17575–17584

Optical bio-chemical sensors on SNOW ring resonators

Mohammadreza Khorasaninejad, Nigel Clarke, M. P. Anantram, and Simarjeet Singh Saini  »View Author Affiliations

Optics Express, Vol. 19, Issue 18, pp. 17575-17584 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1995 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we propose and analyze novel ring resonator based bio-chemical sensors on silicon nanowire optical waveguide (SNOW) and show that the sensitivity of the sensors can be increased by an order of magnitude as compared to silicon-on-insulator based ring resonators while maintaining high index contrast and compact devices. The core of the waveguide is hollow and allows for introduction of biomaterial in the center of the mode, thereby increasing the sensitivity of detection. A sensitivity of 243 nm/refractive index unit (RIU) is achieved for a change in bulk refractive index. For surface attachment, the sensor is able to detect monolayer attachments as small as 1 Å on the surface of the silicon nanowires.

© 2011 OSA

OCIS Codes
(040.6040) Detectors : Silicon
(230.7370) Optical devices : Waveguides
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: July 22, 2011
Manuscript Accepted: August 10, 2011
Published: August 22, 2011

Virtual Issues
Vol. 6, Iss. 9 Virtual Journal for Biomedical Optics

Mohammadreza Khorasaninejad, Nigel Clarke, M. P. Anantram, and Simarjeet Singh Saini, "Optical bio-chemical sensors on SNOW ring resonators," Opt. Express 19, 17575-17584 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008). [CrossRef] [PubMed]
  2. S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6, 213–217 (2006). [CrossRef] [PubMed]
  3. W. E. Moerner, “New directions in single-molecule imaging and analysis,” Proc. Natl. Acad. Sci. U.S.A. 104, 12596–12602 (2007). [CrossRef] [PubMed]
  4. W. G. Cox and V. L. Singer, “Fluorescent DNA hybridization probe preparation using amine modification and reactive dye coupling,” Biotechniques 36, 114–122 (2004). [PubMed]
  5. B. J. Luff, R. D. Harris, J. S. Wilkinson, R. Wilson, and D. J. Schiffrin, “Integrated optical directional coupler biosensor,” Opt. Lett. 21, 618–620 (1996). [CrossRef] [PubMed]
  6. F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14, 907–912 (2003). [CrossRef]
  7. W. C. L. Hopman, P. Pottier, D. Yudistira, J. V. Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. W. M. Hoekstra, and R. M. de Ridder, “Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors,” IEEE J. Sel. Top. Quantum Electron. 11, 11–16 (2005). [CrossRef]
  8. E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express 17, 14543–14551 (2009). [CrossRef] [PubMed]
  9. A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Opt. Lett. 31, 1896–1898 (2006). [CrossRef] [PubMed]
  10. L. Rindorf, J. B. Jenson, M. Dufva, L. H. Pedersen, P. E. Hiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express 14, 8224–8231 (2006). [CrossRef] [PubMed]
  11. K. D. Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007). [CrossRef] [PubMed]
  12. T. Claes, J. G. Molera, K. D. Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009). [CrossRef]
  13. M. Khorasaninejad and S. S. Saini, “Silicon nanowire optical waveguide (SNOW),” Opt. Express 18, 23442–23457 (2010). [CrossRef] [PubMed]
  14. M. Khorasaninejad and S. S. Saini, “Bend-waveguides on silicon nanowire optical waveguide (SNOW),” IEEE Photon. J. 3, 696–702 (2011). [CrossRef]
  15. M. D. Henry, S. Walavalkar, A. Homyk, and A. Scherer, “Alumina etch masks for fabrication of high-aspect-ratio silicon micropillars and nanopillars,” Nanotechnology 20, 1–4 (2009). [CrossRef]
  16. Y. J. Hung, S. L. Lee, and L. A. Coldren, “Deep and tapered silicon photonic crystals for achieving anti-reflection and enhanced absorption,” Opt. Express 18, 6841–6852 (2010). [CrossRef] [PubMed]
  17. S. S. Saini, C. Stanford, S. M. Lee, J. Park, P. DeShong, W. E. Bentley, and M. Dagenais, “Monolayer detection of biochemical agents using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 19, 1341–1343 (2007). [CrossRef]
  18. P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delge, D. X. Xu, S. Janz, A. Densmore, and T. J. Hall, “Subwavelength grating crossings for silicon wire waveguides,” Opt. Express 18, 16146–16155 (2010). [CrossRef] [PubMed]
  19. S. G. Cloutier, P. A. Kossyrev, and J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4, 887–891 (2005). [CrossRef] [PubMed]
  20. E. S. Larsen, J. R. Meyrowitz, and A. J. C. Wilson, “Measurement of refractive index,” in International Tables for Crystallography (2006), Vol.  C, Chap. 3.3, pp. 160–161. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited