OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 18 — Aug. 29, 2011
  • pp: 17647–17652

83 W, 3.1 MHz, square-shaped, 1 ns-pulsed all-fiber-integrated laser for micromachining

Kivanç Özgören, Bülent Öktem, Sinem Yilmaz, F. Ömer Ilday, and Koray Eken  »View Author Affiliations

Optics Express, Vol. 19, Issue 18, pp. 17647-17652 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (4037 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate an all-fiber-integrated laser based on off-the-shelf components producing square-shaped, 1 ns-long pulses at 1.03 μm wavelength with 3.1 MHz repetition rate and 83 W of average power. The master-oscillator power-amplifier system is seeded by a fiber oscillator utilizing a nonlinear optical loop mirror and producing incompressible pulses. A simple technique is employed to demonstrate that the pulses indeed have a random chirp. We propose that the long pulse duration should result in more efficient material removal relative to picosecond pulses, while being short enough to minimize heat effects, relative to nanosecond pulses commonly used in micromachining. Micromachining of Ti surfaces using 0.1 ns, 1 ns and 100 ns pulses supports these expectations.

© 2011 OSA

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(140.3390) Lasers and laser optics : Laser materials processing
(140.4050) Lasers and laser optics : Mode-locked lasers

ToC Category:
Laser Microfabrication

Original Manuscript: July 11, 2011
Revised Manuscript: August 6, 2011
Manuscript Accepted: August 9, 2011
Published: August 23, 2011

Kivanç Özgören, Bülent Öktem, Sinem Yilmaz, F. Ömer Ilday, and Koray Eken, "83 W, 3.1 MHz, square-shaped, 1 ns-pulsed all-fiber-integrated laser for micromachining," Opt. Express 19, 17647-17652 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. O’Neill and K. Li, “High-quality micromachining of silicon at 1064 nm using a high-brightness MOPA-based 20-W Yb fiber laser,” IEEE J. Sel. Top. Quantum Electron. 15, 462–470 (2009). [CrossRef]
  2. M. Erdogan, B. Öktem, H. Kalaycioglu, S. Yavas, P. Mukhopadhyay, K. Eken, K. Özgören, Y. Aykac, U. H. Tazebay, and F. Ö. Ilday, “Texturing of titanium (Ti6AI4V) medical implant surfaces with MHz-repetition-rate femtosecond and picosecond Yb-doped fiber lasers,” Opt. Express 19, 10986 (2011). [CrossRef] [PubMed]
  3. M. Murakami, B. Liu, Z. Hu, Z. Liu, Y. Uehara, and Y. Che, “Burst-mode femtosecond pulsed laser deposition for control of thin film morphology and material ablation,” Appl. Phys. Expr. 2, 042501 (2009). [CrossRef]
  4. H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173 (2000). [CrossRef]
  5. V. J. Matsas, T. P. Newson, and M. N. Zervas, “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarization switching,” Opt. Commun. 92, 61–66 (1992). [CrossRef]
  6. M. Horowitz, Y. Barad, and Y. Silberberg, “Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser,” Opt. Lett. 22, 799–801 (1997). [CrossRef] [PubMed]
  7. N. J. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13, 56 (1988). [CrossRef] [PubMed]
  8. D. Y. Tang, L. M. Zhao, and L. M. Zhao, “Soliton collapse and bunched noise-like pulse generation in a passively mode-locked fiber ring laser,” Opt. Express 13, 2289–2294 (2005). [CrossRef] [PubMed]
  9. L. M. Zhao, D. Y. Tang, J. Wu, X. Q. Fu, and S. C. Wen, “Noise-like pulse in a gain-guided soliton fiber laser,” Opt. Express 15, 2145–2150 (2007). [CrossRef] [PubMed]
  10. L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, “Nanosecond square pulse generation in fiber lasers with normal dispersion,” Opt. Commun. 272, 431 (2007). [CrossRef]
  11. P. K. Mukhopadhyay, K. Özgören, I. L. Budunoglu, and F. Ö. Ilday, “All-fiber low-noise high-power femtosecond Yb-fiber amplifier system seeded by an all-normal dispersion fiber oscillator,” IEEE J. Sel. Top. Quantum Electron. 15, 145 (2009). [CrossRef]
  12. R. P. Scott, C. Langrock, and B. H. Kolner, “High dynamic range laser amplitude and phase noise measurement techniques,” IEEE J. Quantum Electron. 7, 641 (2001). [CrossRef]
  13. I. L. Budunoğlu, C. Ülgüdür, B. Oktem, and F. Ö. Ilday, “Intensity noise of mode-locked fiber lasers,” Opt. Lett. 34, 2516–2518 (2009). [CrossRef] [PubMed]
  14. E. J. R. Kelleher, J. C. Travers, E. P. Ippen, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Generation and direct measurement of giant chirp in a passively mode-locked laser,” Opt. Lett. 34, 3526–3528 (2009). [CrossRef] [PubMed]
  15. A. Chong, J. Buckley, W. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14, 10095–10100 (2006). [CrossRef] [PubMed]
  16. K. Özgören and F. Ö. Ilday, “A filterless all-fiber all-normal dispersion laser,” Opt. Lett. 35, 1296–1298 (2010). [CrossRef] [PubMed]
  17. H. Hodara, “Statistics of thermal and laser radiation,” Proc. IEEE 53, 696–704 (1965). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited