OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 18 — Aug. 29, 2011
  • pp: 17669–17676

40-Gb/s directly-modulated photonic crystal lasers under optical injection-locking

Chin-Hui Chen, Koji Takeda, Akihiko Shinya, Kengo Nozaki, Tomonari Sato, Yoshihiro Kawaguchi, Masaya Notomi, and Shinji Matsuo  »View Author Affiliations


Optics Express, Vol. 19, Issue 18, pp. 17669-17676 (2011)
http://dx.doi.org/10.1364/OE.19.017669


View Full Text Article

Enhanced HTML    Acrobat PDF (2627 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

CMOS integrated circuits (IC) usually requires high data bandwidth for off-chip input/output (I/O) data transport with sufficiently low power consumption in order to overcome pin-count limitation. In order to meet future requirements of photonic network interconnect, we propose an optical output device based on an optical injection-locked photonic crystal (PhC) laser to realize low-power and high-speed off-chip interconnects. This device enables ultralow-power operation and is suitable for highly integrated photonic circuits because of its strong light-matter interaction in the PhC nanocavity and ultra-compact size. High-speed operation is achieved by using the optical injection-locking (OIL) technique, which has been shown as an effective means to enhance modulation bandwidth beyond the relaxation resonance frequency limit. In this paper, we report experimental results of the OIL-PhC laser under various injection conditions and also demonstrate 40-Gb/s large-signal direct modulation with an ultralow energy consumption of 6.6 fJ/bit.

© 2011 OSA

OCIS Codes
(140.3520) Lasers and laser optics : Lasers, injection-locked
(200.4650) Optics in computing : Optical interconnects
(230.5298) Optical devices : Photonic crystals

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: July 26, 2011
Revised Manuscript: August 20, 2011
Manuscript Accepted: August 21, 2011
Published: August 23, 2011

Citation
Chin-Hui Chen, Koji Takeda, Akihiko Shinya, Kengo Nozaki, Tomonari Sato, Yoshihiro Kawaguchi, Masaya Notomi, and Shinji Matsuo, "40-Gb/s directly-modulated photonic crystal lasers under optical injection-locking," Opt. Express 19, 17669-17676 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-18-17669


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE97(7), 1166–1185 (2009). [CrossRef]
  2. S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics4(9), 648–654 (2010). [CrossRef]
  3. R. S. Tucker, “Green optical communications – part I: energy limitations in transport,” IEEE J. Sel. Top. Quantum Electron.17(2), 245–260 (2011). [CrossRef]
  4. S. Matsuo, A. Shinya, C.-H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express19(3), 2242–2250 (2011). [CrossRef] [PubMed]
  5. E. K. Lau, X. Zhao, H.-K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express16(9), 6609–6618 (2008). [CrossRef] [PubMed]
  6. M. Notomi and H. Taniyama, “On-demand ultrahigh-Q cavity formation and photon pinning via dynamic waveguide tuning,” Opt. Express16(23), 18657–18666 (2008). [CrossRef] [PubMed]
  7. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, 1st ed. (Wiley, 1995).
  8. A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron.39(10), 1196–1204 (2003). [CrossRef]
  9. X. Zhao and C. J. Chang-Hasnain, “A new amplifier model for resonance enhancement of optically injection-locked lasers,” IEEE Photon. Technol. Lett.20(6), 395–397 (2008). [CrossRef]
  10. H.-K. Sung, E. K. Lau, and M. C. Wu, “Optical properties and modulation characteristics of ultra-strong injection-locked distributed feedback lasers,” IEEE J. Sel. Top. Quantum Electron.13(5), 1215–1221 (2007). [CrossRef]
  11. E. K. Lau, H.-K. Sung, and M. C. Wu, “Frequency response enhancement of optical injection-locked lasers,” IEEE J. Quantum Electron.44(1), 90–99 (2008). [CrossRef]
  12. Q. V. Tran, S. Combrié, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett.95(6), 061105 (2009). [CrossRef]
  13. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibres,” Electron. Lett.38(25), 1669–1670 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited