OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 18 — Aug. 29, 2011
  • pp: 17697–17712

Wavelength-dependent emission enhancement through the design of active plasmonic nanoantennas

Mélanie Ferrié, Nicola Pinna, Serge Ravaine, and Renaud A. L. Vallée  »View Author Affiliations

Optics Express, Vol. 19, Issue 18, pp. 17697-17712 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (7160 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Owing to the competition between the radiative and non-radiative decay channels occurring in plasmonic assemblies, we show here how to conceive a long pass emission filter and actually design it. We report the synthesis of gold@silica nanoparticles grafted with dye molecules. The control of the thickness of the silica shell allows us to tune the distance between the metal core and the dye molecules. Assemblies of small number (1 to 7) of these core-shell (CS) particles, considered as multimers, have also been produced for the first time. We show that the shaping of the emission spectra of the multimers is drastically enhanced by comparison with the corresponding monomers. We also show a strong enhancement of the decay rates at the LSP resonance, dominated by the non-radiative energy tranfer from the active medium to the metal. The decay rates decrease as the detuning between the long wavelength emission and the LSP resonance increases.

© 2011 OSA

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(160.4236) Materials : Nanomaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: June 27, 2011
Revised Manuscript: July 26, 2011
Manuscript Accepted: July 27, 2011
Published: August 24, 2011

Mélanie Ferrié, Nicola Pinna, Serge Ravaine, and Renaud A. L. Vallée, "Wavelength-dependent emission enhancement through the design of active plasmonic nanoantennas," Opt. Express 19, 17697-17712 (2011)

Sort:  Journal  |  Reset  


  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  2. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  3. J. Gersten and A. Nitzan, “Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces,” J. Chem. Phys.73, 3023 (1980). [CrossRef]
  4. J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett.88, 131109 (2006). [CrossRef]
  5. T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “Lambda/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett.7, 28–33 (2007). [CrossRef] [PubMed]
  6. F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett.7, 496–501 (2007). [CrossRef] [PubMed]
  7. A. Parfenov, I. Gryczynski, J. Malicka, C. D. Geddes, and J. R. Lakowicz, “Enhanced fluorescence from fluorophores on fractal silver surfaces,” J. Phys. Chem. B107, 8829–8833 (2003). [CrossRef] [PubMed]
  8. O. G. Tovmachenko, C. Graf, D. J. van den Heuvel, A. van Blaaderen, and H. C. Gerritsen, “Fluorescence enhancement by metal-core/silica-shell nanoparticles,” Adv. Mater.18, 91–95 (2006). [CrossRef]
  9. J. Enderlein, “Theoretical study of single molecule fluorescence in a metallic nanocavity,” Appl. Phys. Lett.80, 315–317 (2002). [CrossRef]
  10. M. Thomas, J.-J. Greffet, R. Carminati, and J. R. Aria-Gonzales, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett.85, 3863–3865 (2004). [CrossRef]
  11. M. Purcell, H. C. Torrey, and R. V. Pound, “Resonance absorption by nuclear magnetic moments in a solid,” Phys. Rev.69, 37 (1946). [CrossRef]
  12. R. Carminati, J.-J. Greffet, C. Henkel, and J. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun.261, 368 (2006). [CrossRef]
  13. E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett.89, 203002 (2002). [CrossRef] [PubMed]
  14. B. Dubertret, M. Calame, and A. J. Libchaber, “Single-mismatch detection using gold-quenched fluorescent oligonucleotides,” Nat. Biotechnol.19, 365–370 (2001). [CrossRef] [PubMed]
  15. D. J. Maxwell, J. R. Taylor, and S. Nie, “Self-assembled nanoparticle probes for recognition and detection of biomolecules,” J. Am. Chem. Soc.124, 9606–9612 (2002). [CrossRef] [PubMed]
  16. C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal surface energy transfer in optical rulers, breaking the FRET barrier,” J. Am. Chem. Soc.127, 3115–3119 (2005). [CrossRef] [PubMed]
  17. E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. M. Javier, and W. J. Parak, “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression,” Nano Lett.5, 585–589 (2005). [CrossRef] [PubMed]
  18. N. Liu, B. S. Prall, and V. I. Klimov, “Hybrid gold/silica/nanocrystal-quantum-dot superstructures: synthesis and analysis of semiconductor-metal interactions,” J. Am. Chem. Soc.128, 15362 (2006). [CrossRef] [PubMed]
  19. G. Schneider, G. Decher, N. Nerambourg, R. Praho, M. H. V. Werts, and M. Blanchard-Desce, “Distance-dependent fluorescence quenching on gold nanoparticles ensheathed with layer-by-layer assembled polyelectrolytes,” Nano Lett.6, 530–536 (2006). [CrossRef] [PubMed]
  20. S. Kuehn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97, 017402 (2006). [CrossRef]
  21. O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids,” Nano Lett.2, 1449–1452 (2002). [CrossRef]
  22. J. Song, T. Atay, S. Shi, H. Urabe, and A. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett.5, 1557–1561 (2005). [CrossRef] [PubMed]
  23. Y. Chen, K. Munechika, and D. Ginger, “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles,” Nano Lett.7, 690–696 (2007). [CrossRef] [PubMed]
  24. J. B. Khurgin, G. Sun, and R. A. Soref, “Electroluminescence efficiency enhancement using metal nanoparticles,” Appl. Phys. Lett.93, 021120 (2008). [CrossRef]
  25. G. Sun, J. B. Khurgin, and R. A. Soref, “Plasmonic light-emission enhancement with isolated metal nanoparticles and their coupled arrays,” J. Opt. Soc. Am. B25, 1748–1755 (2008). [CrossRef]
  26. J.B. Khurgin, G. Sun, and R. A. Soref, “Practical limits of absorption enhancement near metal nanoparticles,” Appl. Phys. Lett.94, 071103 (2009). [CrossRef]
  27. G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett.94, 101103 (2009). [CrossRef]
  28. T. Förster, “Transfer mechanisms of electronic excitation,” Discuss. Faraday Soc.27, 7–17 (1959).
  29. V. N. Pustovit and T. V. Shahbazyan, “Cooperative emission of light by an ensemble of dipoles near a metal nanoparticle: the plasmonic Dicke effect,” Phys. Rev. Lett.102, 077401 (2009). [CrossRef] [PubMed]
  30. V. N. Pustovit and T. V. Shahbazyan, “Plasmon-mediated superradiance near metal nanostructures,” Phys. Rev. B82, 075429 (2010). [CrossRef]
  31. J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett.95, 017402 (2005). [CrossRef] [PubMed]
  32. J. Zhang, Y. Fu, M. H. Chowdhury, and J. R. Lakowicz, “Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles,” Nano Lett.7, 2101–2107 (2007). [CrossRef] [PubMed]
  33. O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett.7, 2871–2875 (2007). [CrossRef] [PubMed]
  34. A. Bek, R. Jansen, M. Ringler, S. Mayilo, T. A. Klar, and J. Feldmann, “Fluorescence enhancement in hot spots of AFM-designed gold nanoparticle sandwiches,” Nano Lett.8, 485–490 (2008). [CrossRef] [PubMed]
  35. M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett.100, 203002 (2008). [CrossRef] [PubMed]
  36. J. Rodríguez-Fernández, I. Pastoriza-Santos, J. Pérez-Juste, F. J. García de Abajo, and L. M. Liz-Marzán, “The effect of silica coating on the optical response of sub-micrometer gold spheres,” J. Phys. Chem. C111, 13361–13366 (2007). [CrossRef]
  37. Y. Lu, Y. Yin, Z.-Y. Li, and Y. Xia, “Synthesis and self-assembly of Au@SiO2 core-shell colloids,” Nano Lett.2, 785–788 (2002). [CrossRef]
  38. L. Novotny and N. F. van Hulst, “Antennas for light,” Nat. Photonics5, 83–90 (2011). [CrossRef]
  39. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96, 113002 (2006). [CrossRef] [PubMed]
  40. P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, and P. Royer, “Enhancement and quenching regimes in metal-semiconductor hybrid optical nanosources,” ACS Nano4, 759–764 (2010). [CrossRef] [PubMed]
  41. Manuscript in preparation.
  42. R. Zorn, “Logarithmic moments of relaxation time distributions,” J. Chem. Phys.116, 3204–3209 (2002). [CrossRef]
  43. R. A. L. Vallée, K. Baert, B. Kolaric, M. Van der Auweraer, and K. Clays, “Nonexponential decay of spontaneous emission from an ensemble of molecules in photonic crystals,” Phys. Rev. B76, 045113 (2007). [CrossRef]
  44. K. R. Brown, D. G. Walter, and M. J. Natan, “Seeding of colloidal Au nanoparticle solutions. 2. improved control of particle size and shape,” Chem. Mater.12, 306–313 (2000). [CrossRef]
  45. C. Graf and A. van Blaaderen, “Metallodielectric colloidal core-shell particles for photonic applications,” Langmuir18, 524–534 (2002). [CrossRef]
  46. X. Gao, J. He, L. Deng, and H. Cao, “Synthesis and characterization of functionalized rhodamine B-doped silica nanoparticles,” Opt. Mater.31, 1715–1719 (2009). [CrossRef]
  47. S. Kang, S. I. Hong, C. R. Choe, M. Park, S. Rim, and J. Kim, “Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol-gel process,” Polymer42, 879–887 (2001). [CrossRef]
  48. M. Ibisate, Z. Zou, and Y. Xia, “Arresting, fixing, and separating dimers composed of uniform silica colloidal spheres,” Adv. Funct. Mater.16, 1627–1632 (2006). [CrossRef]
  49. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House Inc., 2005).
  50. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181, 687–702 (2010). [CrossRef]
  51. A. Vial, A.-S. Grimault, D. Macas, D. Barchiesi, and M. Lamy de la Chapelle, “Improved analytical fit of gold dispersion : application to the modelling of extinction spectra with the FDTD method,” Phys. Rev. B71, 085416 (2005). [CrossRef]
  52. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited