OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 18 — Aug. 29, 2011
  • pp: 17758–17765

Scalable 3D dense integration of photonics on bulk silicon

Nicolás Sherwood-Droz and Michal Lipson  »View Author Affiliations


Optics Express, Vol. 19, Issue 18, pp. 17758-17765 (2011)
http://dx.doi.org/10.1364/OE.19.017758


View Full Text Article

Enhanced HTML    Acrobat PDF (1143 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally show vertically stacked, multi-layer, low-temperature deposited photonics for integration on processed microelectronics. Waveguides, microrings, and crossings are fabricated out of 400°C PECVD Si3N4 and SiO2 in a two layer configuration. Waveguide losses of ~1 dB/cm in the L-band are demonstrated using standard processing and without post-deposition annealing, along with vertically separated intersections showing −0.04 ± 0.002 dB/cross. Finally 3D drop rings are shown with 25 GHz channels and 24 dB extinction ratio.

© 2011 OSA

OCIS Codes
(130.6750) Integrated optics : Systems
(200.4650) Optics in computing : Optical interconnects

ToC Category:
Integrated Optics

History
Original Manuscript: June 13, 2011
Manuscript Accepted: August 19, 2011
Published: August 25, 2011

Citation
Nicolás Sherwood-Droz and Michal Lipson, "Scalable 3D dense integration of photonics on bulk silicon," Opt. Express 19, 17758-17765 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-18-17758


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput.57(9), 1246–1260 (2008). [CrossRef]
  2. L. Chen, K. Preston, S. Manipatruni, and M. Lipson, “Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors,” Opt. Express17(17), 15248–15256 (2009). [CrossRef] [PubMed]
  3. D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey, M. Mattina, C.-C. Miao, J. F. Brown, and A. Agarwal, “On-chip interconnection architecture of the tile processor,” IEEE Micro27(5), 15–31 (2007). [CrossRef]
  4. A. Joshi, C. Batten, Y.-J. Kwon, S. Beamer, I. Shamim, K. Asanovic, and V. Stojanovic, “Silicon-photonic clos networks for global on-chip communication,” in Proceedings of the 2009 3rd ACM/IEEE International Symposium on Networks-on-Chip (IEEE Computer Society, 2009), pp. 124–133.
  5. D. Vantrease, R. Schreiber, M. Monchiero, M. McLaren, N. P. Jouppi, M. Fiorentino, A. Davis, N. Binkert, R. G. Beausoleil, and J. H. Ahn, “Corona: System Implications of Emerging Nanophotonic Technology,” in Proceedings of the 35th Annual International Symposium on Computer Architecture (IEEE Computer Society, 2008), pp. 153–164.
  6. P. Yan, J. Kim, and G. Memik, “FlexiShare: Channel sharing for an energy-efficient nanophotonic crossbar,” in High Performance Computer Architecture (HPCA), 2010 IEEE 16th International Symposium on(2010), pp. 1–12.
  7. C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building Many-Core Processor-to-DRAM Networks with Monolithic CMOS Silicon Photonics,” (IEEE Computer Society Press, 2009), pp. 8–21.
  8. J. Chan, G. Hendry, A. Biberman, and K. Bergman, “Architectural exploration of chip-scale photonic interconnection network designs using physical-layer analysis,” J. Lightwave Technol.28(9), 1305–1315 (2010). [CrossRef]
  9. N. Sherwood-Droz, A. Gondarenko, and M. Lipson, “Oxidized silicon-on-insulator (OxSOI) from bulk silicon: a new photonic platform,” Opt. Express18(6), 5785–5790 (2010). [CrossRef] [PubMed]
  10. C. W. Holzwarth, J. S. Orcutt, L. Hanqing, M. A. Popovic, V. Stojanovic, J. L. Hoyt, R. J. Ram, and H. I. Smith, “Localized substrate removal technique enabling strong-confinement microphotonics in bulk Si CMOS processes,” in Lasers and Electro-Optics, 2008 and 2008 Conference on Quantum Electronics and Laser Science. CLEO/QELS 2008.(2008), pp. 1–2.
  11. B. A. Block, T. R. Younkin, P. S. Davids, M. R. Reshotko, P. Chang, B. M. Polishak, S. Huang, J. Luo, and A. K. Y. Jen, “Electro-optic polymer cladding ring resonator modulators,” Opt. Express16(22), 18326–18333 (2008). [CrossRef] [PubMed]
  12. K. Preston, S. Manipatruni, A. Gondarenko, C. B. Poitras, and M. Lipson, “Deposited silicon high-speed integrated electro-optic modulator,” Opt. Express17(7), 5118–5124 (2009). [CrossRef] [PubMed]
  13. K. Narayanan, A. W. Elshaari, and S. F. Preble, “Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides,” Opt. Express18(10), 9809–9814 (2010). [CrossRef] [PubMed]
  14. L. Colace, G. M. A. Altieri, and G. Assanto, “Waveguide photodetectors for the near-infrared in polycrystalline Germanium on silicon,” Photon. Technol. Lett.18(9), 1094–1096 (2006). [CrossRef]
  15. E. Cianci, A. Schina, A. Minotti, S. Quaresima, and V. Foglietti, “Dual frequency PECVD silicon nitride for fabrication of CMUTs' membranes,” Sens. Actuators A Phys.127(1), 80–87 (2006). [CrossRef]
  16. M. Hoffmann, P. Kopka, and E. Voges, “Low-loss fiber-matched low-temperature PECVD waveguides with small-core dimensions for optical communication systems,” Photon. Technol. Lett.9(9), 1238–1240 (1997). [CrossRef]
  17. D. K. Sparacin, R. Sun, A. M. Agarwal, M. A. Beals, J. Michel, L. C. Kimerling, T. J. Conway, A. T. Pomerene, D. N. Carothers, M. J. Grove, D. M. Gill, M. S. Rasras, S. S. Patel, and A. E. White, “Low-Loss Amorphous Silicon Channel Waveguides for Integrated Photonics,” in Group IV Photonics, 2006. 3rd IEEE International Conference on(2006), pp. 255–257.
  18. J. M. Fedeli, M. Migette, L. Cioccio, L. El Melhaoui, R. Orobtchouk, C. Seassal, P. Rojo-Romeo, F. Mandorlo, D. Marris-Morini, and L. Vivien, “Incorporation of a Photonic Layer at the Metallizations Levels of a CMOS Circuit,” in Group IV Photonics, 2006. 3rd IEEE International Conference on(2006), pp. 200–202.
  19. M. J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization (Taylor & Francis, Inc., 1997).
  20. E. Herth, B. Legrand, L. Buchaillot, N. Rolland, and T. Lasri, “Optimization of SiNX:H films deposited by PECVD for reliability of electronic, microsystems and optical applications,” Microelectron. Reliab.50(8), 1103–1106 (2010). [CrossRef]
  21. M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation losses of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett.86(12), 121111 (2005). [CrossRef]
  22. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express17(14), 11366–11370 (2009). [CrossRef] [PubMed]
  23. G. N. Parsons, J. H. Souk, and J. Batey, “Low hydrogen content stoichiometric silicon nitride films deposited by plasma-enhanced chemical vapor deposition,” (AIP, 1991), pp. 1553–1560.
  24. S. C. Mao, S. H. Tao, Y. L. Xu, X. W. Sun, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low propagation loss SiN optical waveguide prepared by optimal low-hydrogen module,” Opt. Express16(25), 20809–20816 (2008). [CrossRef] [PubMed]
  25. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett.28(15), 1302–1304 (2003). [CrossRef] [PubMed]
  26. W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides,” Opt. Lett.32(19), 2801–2803 (2007). [CrossRef] [PubMed]
  27. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron.35(9), 1322–1331 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited