OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 18 — Aug. 29, 2011
  • pp: 17790–17798

Increased process latitude in absorbance-modulated lithography via a plasmonic reflector

Charles W. Holzwarth, John E. Foulkes, and Richard J. Blaikie  »View Author Affiliations


Optics Express, Vol. 19, Issue 18, pp. 17790-17798 (2011)
http://dx.doi.org/10.1364/OE.19.017790


View Full Text Article

Enhanced HTML    Acrobat PDF (3007 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Absorbance-modulated lithography is a relatively new optical patterning method where a thin layer of photochromic molecules is placed between the far-field optics and photoresist. These molecules can be made transparent or opaque by illuminating with wavelengths λ1 or λ2, respectively. By simultaneously illuminating this layer with patterns of both wavelengths it is possible to create an absorption mask capable of subwavelength resolution. This resolution comes at the price of limited contrast and depth-of-focus resulting in poor process latitude. Here it is shown that by using TM polarization for λ1 and integrating a plasmonic reflector process latitude is increased by up to 66%.

© 2011 OSA

OCIS Codes
(110.5220) Imaging systems : Photolithography
(160.4330) Materials : Nonlinear optical materials
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Imaging Systems

History
Original Manuscript: July 11, 2011
Revised Manuscript: August 7, 2011
Manuscript Accepted: August 8, 2011
Published: August 25, 2011

Citation
Charles W. Holzwarth, John E. Foulkes, and Richard J. Blaikie, "Increased process latitude in absorbance-modulated lithography via a plasmonic reflector," Opt. Express 19, 17790-17798 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-18-17790


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Okazaki, “Resolution limits of optical lithography,” J. Vac. Sci. Technol. B9(6), 2829–2833 (1991). [CrossRef]
  2. E. Muzio, “Optical lithography cost of ownership (COO) – final report for LITG501,” SEMATECH, (2000) http://www.sematech.org/docubase/document/4014atr.pdf .
  3. T. Ito, T. Yamada, Y. Inao, T. Yamaguchi, N. Mizutani, and R. Kuroda, “Fabrication of half-pitch 32 nm resist pattern using near-field lithography with a-Si mask,” Appl. Phys. Lett.89(3), 033113 (2006). [CrossRef]
  4. R. Menon and H. I. Smith, “Absorbance-modulation optical lithography,” J. Opt. Soc. Am. A23(9), 2290–2294 (2006). [CrossRef] [PubMed]
  5. T. L. Andrew, H. Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science324(5929), 917–921 (2009). [CrossRef] [PubMed]
  6. R. Menon, H. Y. Tsai, and S. W. Thomas, “Far-field generation of localized light fields using absorbance modulation,” Phys. Rev. Lett.98(4), 043905 (2007). [CrossRef] [PubMed]
  7. J. Foulkes and R. J. Blaikie, “Influence of polarization on absorbance modulated subwavelength grating structures,” J. Vac. Sci. Technol. B27(6), 2941–2946 (2009). [CrossRef]
  8. M. D. Arnold and R. J. Blaikie, “Subwavelength optical imaging of evanescent fields using reflections from plasmonic slabs,” Opt. Express15(18), 11542–11552 (2007). [CrossRef] [PubMed]
  9. COMSOL Inc, 744 Cowper Steet, Palo Alto, CA 94301, www.comsol.com .
  10. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP2, 466–475 (1956).
  11. H. S. Ho, A. Natansohn, C. Barrett, and P. Rochon, “Azo polymers for reversible optical storage. 8. The effect of polarity of the azobenzene groups,” Can. J. Chem.72(11), 1773–1778 (1995). [CrossRef]
  12. C. Barrett, A. Natansohn, and P. Rochon, “Cis-trans thermal isomerization rates of bound and doped azobenzenes in a series of polymers,” Chem. Mater.7(5), 899–903 (1995). [CrossRef]
  13. N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem.9(9), 1941–1955 (1999). [CrossRef]
  14. C. J. Barrett, A. L. Natansohn, and P. L. Rochon, “Mechanism of optically inscribed high-efficiency diffraction gratings in azo polymer films,” J. Phys. Chem.100(21), 8836–8842 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited