OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 19 — Sep. 12, 2011
  • pp: 17876–17907

Theory of quantum frequency translation of light in optical fiber: application to interference of two photons of different color

H. J. McGuinness, M. G. Raymer, and C. J. McKinstrie  »View Author Affiliations

Optics Express, Vol. 19, Issue 19, pp. 17876-17907 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1749 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study quantum frequency translation and two-color photon interference enabled by the Bragg scattering four-wave mixing process in optical fiber. Using realistic model parameters, we computationally and analytically determine the Green function and Schmidt modes for cases with various pump-pulse lengths. These cases can be categorized as either “non-discriminatory” or “discriminatory” in regards to their propensity to exhibit high-efficiency translation or high-visibility two-photon interference for many different shapes of input wave packets or for only a few input wave packets, respectively. Also, for a particular case, the Schmidt mode set was found to be nearly equal to a Hermite-Gaussian function set. The methods and results also apply with little modification to frequency conversion by sum-frequency conversion in optical crystals.

© 2011 OSA

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: July 13, 2011
Revised Manuscript: July 14, 2011
Manuscript Accepted: July 14, 2011
Published: August 29, 2011

H. J. McGuinness, M. G. Raymer, and C. J. McKinstrie, "Theory of quantum frequency translation of light in optical fiber: application to interference of two photons of different color," Opt. Express 19, 17876-17907 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency upconversion,” J. Mod. Opt. 51, 1433–1445 (2004).
  2. S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005). [CrossRef] [PubMed]
  3. C. J. McKinstrie, J. D. Harvey, S. Radic, and M. G. Raymer, “Translation of quantum states by four-wave mixing in fibers,” Opt. Express 13, 9131–9142 (2005). [CrossRef] [PubMed]
  4. A. H. Gnauck, R. M. Jopson, C. J. McKinstrie, J. C. Centanni, and S. Radic, “Demonstration of low-noise frequency conversion by Bragg scattering in a fiber,” Opt. Express 14, 8989–8994 (2006). [CrossRef] [PubMed]
  5. D. Méchin, R. Provo, J. D. Harvey, and C. J. McKinstrie, “180-nm wavelength conversion based on Bragg scattering in an optical fiber,” Opt. Express 14, 8995–8999 (2006). [CrossRef] [PubMed]
  6. H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Wavelength translation across 210 nm in the visible using vector Bragg scattering in a birefringent photonic crystal fiber,” Photon. Technol. Lett. 23, 109–111 (2011). [CrossRef]
  7. J. M. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68, 2153–2156 (1992). [CrossRef] [PubMed]
  8. H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett. 105, 093604 (2010). [CrossRef] [PubMed]
  9. M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nature Photon. 4, 786–791 (2010). [CrossRef]
  10. M. G. Raymer, S. J. van Enk, C. J. McKinstrie, and H. J. McGuinness, “Interference of two photons of different color,” Opt. Commun. 283, 747–752 (2010). [CrossRef]
  11. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001). [CrossRef] [PubMed]
  12. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007). [CrossRef]
  13. N. C. Menicucci, S. T. Flammia, and O. Pfister, “One-way quantum computing in the optical frequency comb,” Phys. Rev. Lett. 101, 130501 (2008). [CrossRef] [PubMed]
  14. J. L. O’Brien, “Quantum computing over the rainbow,” Physics 1, 23 (2008). [CrossRef]
  15. A. Eckstein, B. Brecht, and C. Silberhorn, “A quantum pulse gate based on spectrally engineered sum frequency generation,” Opt. Express 19, 13770–13778 (2010) [CrossRef]
  16. J. A. Salehi, A. M. Weiner, and J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightwave Technol. 8, 478–491 (1990). [CrossRef]
  17. M. E. Marhic, “Coherent optical CDMA networks,” J. Lightwave Technol. 11, 854–864 (1993). [CrossRef]
  18. B. Brecht, A. Eckstein, A. Christ, H. Suche, and C. Silberhorn, “From quantum pulse gate to quantum pulse shaper-engineered frequency conversion in nonlinear optical waveguides,” New J. Phys. 13, 065029 (2011). [CrossRef]
  19. D. Kielpinski, A.F. Corney, and H.M. Wiseman, “Quantum optical waveform conversion” Phys. Rev Lett. 106, 130501 (2011). [CrossRef] [PubMed]
  20. H. J. McGuinness, “The creation and frequency translation of single-photon states of light in optical fiber,” Ph.D. thesis, University of Oregon, Eugene, Oregon (2011).
  21. K. Inoue, “Tunable and selective wavelength conversion using fiber four-wave mixing with two pump lights,” IEEE Photon. Technol. Lett. 6, 1451–1453 (1994). [CrossRef]
  22. R. W. Boyd, Nonlinear Optics , 3rd ed. (Elsevier Science, 2008).
  23. C. J. McKinstrie, S. Radic, and M. G. Raymer, “Quantum noise properties of parametric amplifiers driven by two pump waves,” Opt. Express 12, 5037–5066 (2004). [CrossRef] [PubMed]
  24. A. Ekert and P. L. Knight, “Entangled quantum systems and the schmidt decomposition,” Am. J. Phys. 63, 415–423 (1995). [CrossRef]
  25. P. D. Drummond and C. W. Gardiner, “Generalized P-representations in quantum optics,” J. Phys. A 13, 2353–2368 (1980). [CrossRef]
  26. C. W. Gardiner, Quantum Noise (Springer, 1992).
  27. W. Wasilewski and M. G. Raymer, “Pairwise entanglement and readout of atomic-ensemble and optical wave-packet modes in traveling-wave Raman interactions,” Phys. Rev. A , 73, 063816 (2006). [CrossRef]
  28. W. Wasilewski, A. I. Lvovsky, K. Banaszek, and C. Radzewicz, “Pulse squeezed light: simultaneous squeezing of multiple modes,” Phys. Rev. A , 73, 063816 (2006). [CrossRef]
  29. G. P. Agrawal, Nonlinear Fiber Optics , 4th ed. (Elsevier Science, 2008).
  30. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran , 2nd ed. (Cambridge University Press, 1992).
  31. P. S. J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003). [CrossRef] [PubMed]
  32. G. K. Wong, A. Y. H. Chen, S. W. Ha, R. J. Kruhlak, S. G. Murdoch, R. Leonhardt, J. D. Harvey, and N. Joly, “Characterization of chromatic dispersion in photonic crystal fibers using scalar modulation instability,” Opt. Express 13, 8662–8670 (2005). [CrossRef] [PubMed]
  33. F. G. Mehler, “Über die entwicklung einer funktion von beliebig vielen variablen nach Laplaceschen functionen höherer ordnung,” J. Reine Angew. Math. 66, 161–176 (1866). [CrossRef]
  34. P. M. Morse and H. Feschbach, Methods of Theoretical Physics (McGraw-Hill, 1953).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited