OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 19 — Sep. 12, 2011
  • pp: 17925–17934

Optical gain in single tensile-strained germanium photonic wire

M. de Kersauson, M. El Kurdi, S. David, X. Checoury, G. Fishman, S. Sauvage, R. Jakomin, G. Beaudoin, I. Sagnes, and P. Boucaud  »View Author Affiliations

Optics Express, Vol. 19, Issue 19, pp. 17925-17934 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1368 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have investigated the optical properties of tensile-strained germanium photonic wires. The photonic wires patterned by electron beam lithography (50 μm long, 1 μm wide and 500 nm thick) are obtained by growing a n-doped germanium film on a GaAs substrate. Tensile strain is transferred in the germanium layer using a Si3N4 stressor. Tensile strain around 0.4% achieved by the technique corresponds to an optical recombination of tensile-strained germanium involving light hole band around 1690 nm at room temperature. We show that the waveguided emission associated with a single tensile-strained germanium wire increases superlinearly as a function of the illuminated length. A 20% decrease of the spectral broadening is observed as the pump intensity is increased. All these features are signatures of optical gain. A 80 cm−1 modal optical gain is derived from the variable strip length method. This value is accounted for by the calculated gain material value using a 30 band k · p formalism. These germanium wires represent potential building blocks for integration of nanoscale optical sources on silicon.

© 2011 OSA

OCIS Codes
(230.0250) Optical devices : Optoelectronics
(250.4480) Optoelectronics : Optical amplifiers
(300.6470) Spectroscopy : Spectroscopy, semiconductors
(310.6860) Thin films : Thin films, optical properties

ToC Category:

Original Manuscript: May 12, 2011
Revised Manuscript: July 22, 2011
Manuscript Accepted: August 1, 2011
Published: August 29, 2011

M. de Kersauson, M. El Kurdi, S. David, X. Checoury, G. Fishman, S. Sauvage, R. Jakomin, G. Beaudoin, I. Sagnes, and P. Boucaud, "Optical gain in single tensile-strained germanium photonic wire," Opt. Express 19, 17925-17934 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Liu, X. Sun, L. C. Kimerling, and J. Michel, “Direct-gap optical gain of Ge on Si at room temperature,” Opt. Lett. 34, 1738–1740 (2009). [CrossRef] [PubMed]
  2. J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35, 679–681 (2010). [CrossRef] [PubMed]
  3. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010). [CrossRef]
  4. J. Menendez and J. Kouvetakis, “Type-I Ge/Ge1–x–ySixSny strained-layer heterostructures with a direct Ge bandgap,” Appl. Phys. Lett. 85, 1175–1177 (2004). [CrossRef]
  5. Y. Bai, K. E. Lee, C. Cheng, M. L. Lee, and E. A. Fitzgerald, “Growth of highly tensile-strained Ge on relaxed InxGa1–xAs by metal-organic chemical vapor deposition,” J. Appl. Phys. 104, 084518 (2008). [CrossRef]
  6. Y. Huo, H. Lin, R. Chen, M. Makarova, Y. Rong, M. Li, T. I. Kamins, J. Vuckovic, and J. S. Harris, “Strong enhancement of direct transition photoluminescence with highly tensile-strained Ge grown by molecular beam epitaxy,” Appl. Phys. Lett. 98, 011111 (2011). [CrossRef]
  7. R. Jakomin, M. de Kersauson, M. E. Kurdi, L. Largeau, O. Mauguin, G. Beaudoin, S. Sauvage, R. Ossikovski, G. Ndong, M. Chaigneau, I. Sagnes, and P. Boucaud, “High quality tensile-strained n-doped germanium thin films grown on InGaAs buffer layers by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 98, 091901 (2011). [CrossRef]
  8. M. El Kurdi, H. Bertin, E. Martincic, M. de Kersauson, G. Fishman, S. Sauvage, A. Bosseboeuf, and P. Boucaud, “Control of direct band gap emission of bulk germanium by mechanical tensile strain,” Appl. Phys. Lett. 96, 041909 (2010). [CrossRef]
  9. T.-H. Cheng, K.-L. Peng, C.-Y. Ko, C.-Y. Chen, H.-S. Lan, Y.-R. Wu, C. W. Liu, and H.-H. Tseng, “Strain-enhanced photoluminescence from Ge direct transition,” Appl. Phys. Lett. 96, 211108 (2010). [CrossRef]
  10. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006). [CrossRef] [PubMed]
  11. R. Jakomin, G. Beaudoin, N. Gogneau, B. Lamare, L. Largeau, O. Mauguin, and I. Sagnes, “p and n-type germanium layers grown using iso-butyl germane in a III–V metal-organic vapor phase epitaxy reactor,” Thin Solid Films 519, 4186–4191 (2011). [CrossRef]
  12. M. de Kersauson, R. Jakomin, M. El Kurdi, G. Beaudoin, N. Zerounian, F. Aniel, S. Sauvage, I. Sagnes, and P. Boucaud, “Direct and indirect band gap room temperature electroluminescence of Ge diodes,” J. Appl. Phys. 108, 023105 (2010). [CrossRef]
  13. J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express 15, 11272–11277 (2007). [CrossRef] [PubMed]
  14. M. El Kurdi, T. Kociniewski, T.-P. Ngo, J. Boulmer, D. Debarre, P. Boucaud, J. F. Damlencourt, O. Kermarrec, and D. Bensahel, “Enhanced photoluminescence of heavily n-doped germanium,” Appl. Phys. Lett. 94, 191107 (2009).
  15. V. Yam, V. Le Thanh, Y. Zheng, P. Boucaud, and D. Bouchier, “Photoluminescence study of a bimodal size distribution of Ge/Si(001) quantum dots,” Phys. Rev. B 63, 033313 (2001). [CrossRef]
  16. J. O’Gorman, S. L. Chuang, and A. F. J. Levi, “Carrier pinning by mode fluctuations in laser diodes,” Appl. Phys. Lett. 62, 1454–1456 (1993). [CrossRef]
  17. J. R. Haynes, “New radiation resulting from recombination of holes and electrons in germanium,” Phys. Rev. 98, 1866–1868 (1955). [CrossRef]
  18. K. L. Shaklee and R. F. Leheny, “Direct determination of optical gain in semiconductor crystals,” Appl. Phys. Lett. 18, 475–477 (1971). [CrossRef]
  19. M. D. McGehee, R. Gupta, S. Veenstra, E. K. Miller, M. A. Díaz-García, and A. J. Heeger, “Amplified spontaneous emission from photopumped films of a conjugated polymer,” Phys. Rev. B 58, 7035–7039 (1998). [CrossRef]
  20. X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes,” Opt. Lett. 34, 1198–1200 (2009). [CrossRef] [PubMed]
  21. S.-L. Cheng, J. Lu, G. Shambat, H.-Y. Yu, K. Saraswat, J. Vuckovic, and Y. Nishi, “Room temperature 1.6 μm electroluminescence from Ge light emitting diode on Si substrate,” Opt. Express 17, 10019–10024 (2009). [CrossRef] [PubMed]
  22. W. Klingenstein and H. Schweizer, “Direct gap recombination in germanium at high excitation level and low temperature,” Solid-State Electron. 21, 1371–1374 (1978). [CrossRef]
  23. R. Conradt and J. Aengenheister, “Minority carrier lifetime in highly doped Ge,” Solid State Commun. 10, 321–323 (1972). [CrossRef]
  24. M. El Kurdi, G. Fishman, S. Sauvage, and P. Boucaud, “Band structure and optical gain of tensile-strained germanium based on a 30 band k · p formalism,” J. Appl. Phys. 107, 013710 (2010). [CrossRef]
  25. M. El Kurdi, S. Sauvage, G. Fishman, and P. Boucaud, “Band-edge alignment of SiGe/Si quantum wells and SiGe/Si self-assembled islands,” Phys. Rev. B 73, 195327 (2006).
  26. S.-W. Chang and S. L. Chuang, “Theory of optical gain of Ge-SixGeySn1–x–y quantum-well lasers,” IEEE J. Quantum Electron. 43, 249–256 (2007). [CrossRef]
  27. L. Allen and G. I. Peters, “Amplified spontaneous emission and external signal amplification in an inverted medium,” Phys. Rev. A 8, 2031–2047 (1973). [CrossRef]
  28. M. El Kurdi, S. David, X. Checoury, G. Fishman, P. Boucaud, O. Kermarrec, D. Bensahel, and B. Ghyselen, “Two-dimensional photonic crystals with pure germanium-on-insulator,” Opt. Commun. 281, 846–850 (2008). [CrossRef]
  29. T.-P. Ngo, M. El Kurdi, X. Checoury, P. Boucaud, J. F. Damlencourt, O. Kermarrec, and D. Bensahel, “Two-dimensional photonic crystals with germanium on insulator obtained by a condensation method,” Appl. Phys. Lett. 93, 241112 (2008). [CrossRef]
  30. J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1, 106–110 (2002). [CrossRef]
  31. X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers.” Nature 421, 241 (2003). [CrossRef] [PubMed]
  32. M. A. Zimmler, F. Capasso, S. Moller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Technol. 25, 024001 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited