OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 19 — Sep. 12, 2011
  • pp: 17935–17943

Bright blue photoluminescence from the amorphous carbon via surface plasmon enhancement

Zhe Li, Xiang Li, Zhaohui Ren, Qian Gao, Xiwen Zhang, and Gaorong Han  »View Author Affiliations


Optics Express, Vol. 19, Issue 19, pp. 17935-17943 (2011)
http://dx.doi.org/10.1364/OE.19.017935


View Full Text Article

Enhanced HTML    Acrobat PDF (4013 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Blue photoluminescence (PL) from hydrogenated amorphous carbon (a-C:H) films has been successfully enhanced via surface plasmons (SPs). a-C:H films with different thickness were deposited on Ag interlayers, of which the nanostructure was tuned from nanoparticles (NPs) to continuous films via processing conditions control. The PL enhancement factor was found to increase with the Ag NP growth and the surface roughness of the continuous Ag interlayer. A PL enhancement factor of more than 9 times has been successfully achieved when the 43 nm-thick a-C:H film coupled to an Ag interlayer with the peak surface roughness. a-C:H films with SP-enhanced PL have therefore been demonstrated to be promising for light-emitting applications.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.5230) Optoelectronics : Photoluminescence

ToC Category:
Optics at Surfaces

History
Original Manuscript: June 6, 2011
Revised Manuscript: July 15, 2011
Manuscript Accepted: August 22, 2011
Published: August 29, 2011

Citation
Zhe Li, Xiang Li, Zhaohui Ren, Qian Gao, Xiwen Zhang, and Gaorong Han, "Bright blue photoluminescence from the amorphous carbon via surface plasmon enhancement," Opt. Express 19, 17935-17943 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-19-17935


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Y. C. Tsai, L. Qian, H. Alizadeh, and N. P. Kherani, “Room-temperature photoluminescence in erbium-doped deuterated amorphous carbon prepared by low-temperature MO-PECVD,” Opt. Express17(23), 21098–21107 (2009). [CrossRef] [PubMed]
  2. S. J. Henley, J. D. Carey, and S. R. P. Silva, “Room temperature photoluminescence from nanostructured amorphous carbon,” Appl. Phys. Lett.85(25), 6236–6238 (2004). [CrossRef]
  3. A. Foulani and C. Laurent, “Wide-gap a-C:H prepared by do glow discharge of CH4: photoluminescence and electroluminescence in the visible region,” Mater. Chem. Phys.80(2), 466–471 (2003). [CrossRef]
  4. S. Y. Lo, R. H. Yeh, T. R. Yu, and J. W. Hong, “Effects of Hydrogenation on Optoelectronic Properties of a-C:H Thin-Film White-Light-Emitting Diodes With Composition-Graded Carrier-Injection Layers,” IEEE Trans. Electron. Dev.56(1), 57–64 (2009). [CrossRef]
  5. X. H. Huang, J. Xu, W. Li, and K. J. Chen, “Preparation of amorphous carbon films by layer-by-layerhydrogen plasma annealing method and their luminescence properties,” Thin Solid Films422(1-2), 130–134 (2002). [CrossRef]
  6. S. Toth, M. Veres, M. Fule, and M. Koos, “Influence of layer thickness on the photo luminescence and Raman scattering of a-C:H prepared from benzene,” Diamond Related Materials15(4-8), 967–971 (2006). [CrossRef]
  7. J. Robertson, ““Diamond-like amorphous carbon,” Mater. Sci. Eng,” R-Rep.37, 129–281 (2002).
  8. J. Rusli, J. Robertson, and G. A. J. Amaratunga, “Photoluminescence behavior of hydrogenated amorphous carbon,” J. Appl. Phys.80(5), 2998–3003 (1996). [CrossRef]
  9. W. L. Barnes, “Light-emitting devices: turning the tables on surface plasmons,” Nat. Mater.3(9), 588–589 (2004). [CrossRef] [PubMed]
  10. B. H. Kim, C. H. Cho, J. S. Mun, M. K. Kwon, T. Y. Park, J. S. Kim, C. C. Byeon, J. Lee, and S. J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. (Deerfield Beach Fla.)20(16), 3100–3104 (2008). [CrossRef]
  11. C. Y. Cho, M. K. Kwon, S. J. Lee, S. H. Han, J. W. Kang, S. E. Kang, D. Y. Lee, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN,” Nanotechnology21(20), 205201 (2010). [CrossRef] [PubMed]
  12. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004). [CrossRef] [PubMed]
  13. K. Okamoto and Y. Kawakami, “High-Efficiency InGaN/GaN Light Emitters Based on Nanophotonics and Plasmonics,” IEEE J. Sel. Top. Quantum Electron.15(4), 1199–1209 (2009). [CrossRef]
  14. D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology19(34), 345201 (2008). [CrossRef] [PubMed]
  15. W. H. Ni, J. An, C. W. Lai, H. C. Ong, and J. B. Xu, “Emission enhancement from metallodielectric-capped ZnO films,” J. Appl. Phys.100(2), 026103 (2006). [CrossRef]
  16. D. Y. Lei and H. C. Ong, “Enhanced forward emission from ZnO via surface plasmons,” Appl. Phys. Lett.91, 021112 (2007). [CrossRef]
  17. P. H. Cheng, D. S. Li, Z. Z. Yuan, P. L. Chen, and D. R. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett.92(4), 041119 (2008). [CrossRef]
  18. J. Li and H. C. Ong, “Temperature dependence of surface plasmon mediated emission from metal-capped ZnO films,” Appl. Phys. Lett.92(12), 121107 (2008). [CrossRef]
  19. P. H. Cheng, D. S. Li, X. Q. Li, T. Liu, and D. R. Yang, “Localized surface plasmon enhanced photoluminescence from ZnO films: Extraction direction and emitting layer thickness,” J. Appl. Phys.106(6), 063120 (2009). [CrossRef]
  20. B. J. Lawrie, R. F. Haglund, and R. Mu, “Enhancement of ZnO photoluminescence by localized and propagating surface plasmons,” Opt. Express17(4), 2565–2572 (2009). [CrossRef] [PubMed]
  21. F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys.105(11), 114310 (2009). [CrossRef]
  22. F. Demichelis, S. Schreiter, and A. Tagliaferro, “Photoluminesence in a-C-H films,” Phys. Rev. B51(4), 2143–2147 (1995). [CrossRef]
  23. Z. Li, J. Zhang, H. Y. He, J. C. Bian, X. W. Zhang, and G. R. Han, “Blue-green luminescence and SERS study of carbon-rich hydrogenated amorphous silicon carbide films with multiphase structure,” Phys. Status Solidi A-Appl. Mat.207(11), 2543–2548 (2010). [CrossRef]
  24. J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem.337(2), 171–194 (2005). [CrossRef] [PubMed]
  25. J. Henson, E. Dimakis, J. DiMaria, R. Li, S. Minissale, L. Dal Negro, T. D. Moustakas, and R. Paiella, “Enhanced near-green light emission from InGaN quantum wells by use of tunable plasmonic resonances in silver nanoparticle arrays,” Opt. Express18(20), 21322–21329 (2010). [CrossRef] [PubMed]
  26. D. D. Evanoff and G. Chumanov, “Size-controlled synthesis of nanoparticles. 2. Measurement of extinction, scattering, and absorption cross sections,” J. Phys. Chem. B108(37), 13957–13962 (2004). [CrossRef]
  27. I. M. Soganci, S. Nizamoglu, E. Mutlugun, O. Akin, and H. V. Demir, “Localized plasmon-engineered spontaneous emission of CdSe/ZnS nanocrystals closely-packed in the proximity of Ag nanoisland films for controlling emission linewidth, peak, and intensity,” Opt. Express15(22), 14289–14298 (2007). [CrossRef] [PubMed]
  28. C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal surface energy transfer in optical rulers, breaking the FRET barrier,” J. Am. Chem. Soc.127(9), 3115–3119 (2005). [CrossRef] [PubMed]
  29. X. D. Zhou, X. H. Xiao, J. X. Xu, G. X. Cai, F. Ren, and C. Z. Jiang, “Mechanism of the enhancement and quenching of ZnO photoluminescence by ZnO-Ag coupling,” Epl93(5), 57009 (2011). [CrossRef]
  30. J. B. You, X. W. Zhang, Y. M. Fan, Z. G. Yin, P. F. Cai, and N. F. Chen, “Effects of the morphology of ZnO/Ag interface on the surface-plasmon-enhanced emission of ZnO films,” J. Phys. D Appl. Phys.41(20), 205101 (2008). [CrossRef]
  31. T. D. Neal, K. Okamoto, and A. Scherer, “Surface plasmon enhanced emission from dye doped polymer layers,” Opt. Express13(14), 5522–5527 (2005). [CrossRef] [PubMed]
  32. E. D. Palik, Handbook of Optical Constants of Solid, Academic Press Handbook Series (Academic Press, New York, 1985).
  33. J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett.11(3), 1280–1283 (2011). [CrossRef] [PubMed]
  34. G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett.8(2), 631–636 (2008). [CrossRef] [PubMed]
  35. B. M. Ross and L. P. Lee, “Comparison of near- and far-field measures for plasmon resonance of metallic nanoparticles,” Opt. Lett.34(7), 896–898 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited