OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 19 — Sep. 12, 2011
  • pp: 17944–17950

Non-linear optoelectronic phase-locked loop for stabilization of opto-millimeter waves: towards a narrow linewidth tunable THz source

A. Rolland, G. Loas, M. Brunel, L. Frein, M. Vallet, and M. Alouini  »View Author Affiliations


Optics Express, Vol. 19, Issue 19, pp. 17944-17950 (2011)
http://dx.doi.org/10.1364/OE.19.017944


View Full Text Article

Enhanced HTML    Acrobat PDF (988 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose an optoelectronic phase-locked loop concept which enables to stabilize optical beat notes at high frequencies in the mm-wave domain. It relies on the use of a nonlinear-response Mach-Zehnder modulator. This concept is demonstrated at 100 GHz using a two-axis dual-frequency laser turned into a voltage controlled oscillator by means of an intracavity electrooptic crystal. A relative frequency stability better than 10−11 is reported. This approach of optoelectronic down conversion opens the way to the realization of continuously tunable ultra-narrow linewidth THz radiation.

© 2011 OSA

OCIS Codes
(140.3580) Lasers and laser optics : Lasers, solid-state
(040.2235) Detectors : Far infrared or terahertz
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: June 16, 2011
Revised Manuscript: July 21, 2011
Manuscript Accepted: August 5, 2011
Published: August 29, 2011

Citation
A. Rolland, G. Loas, M. Brunel, L. Frein, M. Vallet, and M. Alouini, "Non-linear optoelectronic phase-locked loop for stabilization of opto-millimeter waves: towards a narrow linewidth tunable THz source," Opt. Express 19, 17944-17950 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-19-17944


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1(2), 97–105 (2007). [CrossRef]
  2. J.-F. Cliche, B. Shillue, M. Têtu, and M. Poulin, “A 100-GHz-tunable photonic millimeter-wave synthesizer for the Atacama Large Millimeter Array radiotelescope,” IEEE/MTT-S International Microwave Symposium, pp.349–352, 3–8 June 2007.
  3. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007). [CrossRef]
  4. B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics1(9), 517–525 (2007). [CrossRef]
  5. Q. Gan and F. J. Bartoli, “Graded metallic gratings for ultrawideband surface wave trapping at THz frequencies,” IEEE J. Sel. Top. Quantum Electron.17(1), 102–109 (2011). [CrossRef]
  6. G. Mouret, F. Hindle, A. Cuisset, C. Yang, R. Bocquet, M. Lours, and D. Rovera, “THz photomixing synthesizer based on a fiber frequency comb,” Opt. Express17(24), 22031–22040 (2009). [CrossRef] [PubMed]
  7. Q. Quraishi, M. Griebel, T. Kleine-Ostmann, and R. Bratschitsch, “Generation of phase-locked and tunable continuous-wave radiation in the terahertz regime,” Opt. Lett.30(23), 3231–3233 (2005). [CrossRef] [PubMed]
  8. G. W. Baxter, J. M. Dawes, P. Dekker, and D. S. Knowles, “Dual-polarization frequency-modulated laser source,” IEEE Photon. Technol. Lett.8(8), 1015–1017 (1996). [CrossRef]
  9. D. Wake, C. R. Lima, and P. A. Davies, “Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser,” IEEE Trans. Microw. Theory Tech.43(9), 2270–2276 (1995). [CrossRef]
  10. W. H. Loh, J. P. de Sandro, G. J. Cowle, B. N. Samson, and A. D. Ellis, “40 GHz optical-millimetre wave generation with a dual polarisation distributed feedback fibre laser,” Electron. Lett.33(7), 594–595 (1997). [CrossRef]
  11. F. Siebe, K. Siebert, R. Leonhardt, and H. G. Roskos, “A fully tunable dual-color CW Ti:Al2O3 laser,” IEEE J. Quantum Electron.35(11), 1731–1736 (1999). [CrossRef]
  12. M. Scheller, J. M. Yarborough, J. V. Moloney, M. Fallahi, M. Koch, and S. W. Koch, “Room temperature continuous wave milliwatt terahertz source,” Opt. Express18(26), 27112–27117 (2010). [CrossRef] [PubMed]
  13. A. McKay and J. M. Dawes, “Tunable terahertz signals using a helicoidally polarized ceramic microchip laser,” IEEE Photon. Technol. Lett.21(7), 480–482 (2009). [CrossRef]
  14. M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Le Floch, “Dual tunable wavelength Er:Yb:Glass laser for terahertz beat frequency generation,” IEEE Photon. Technol. Lett.10(11), 1554–1556 (1998). [CrossRef]
  15. R. Czarny, M. Alouini, C. Larat, M. Krakowski, and D. Dolfi, “THz-dual-frequency Yb3+:KGd(WO4)2 laser for continuous wave THz generation through photomixing,” Electron. Lett.40(15), 942–943 (2004). [CrossRef]
  16. M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett.16(3), 870–872 (2004). [CrossRef]
  17. L. Morvan, D. Dolfi, J.-P. Huignard, S. Blanc, M. Brunel, M. Vallet, F. Bretenaker, and A. Le Floch, “Dual-frequency laser at 1.53 µm for generating high-purity optically carried microwave signals up to 20 GHz,” in Conf. Lasers Electro-Opt. (CLEO), 2004, p. 2.
  18. M. Vallet, M. Brunel, and M. Oger, “RF photonic synthesizer,” Electron. Lett.43(25), 1437–1438 (2007). [CrossRef]
  19. A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40 GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photon. Technol. Lett.22(23), 1738–1740 (2010). [CrossRef]
  20. A. Rolland, M. Brunel, G. Loas, L. Frein, M. Vallet, and M. Alouini, “Beat note stabilization of a 10-60 GHz dual-polarization microlaser through optical down conversion,” Opt. Express19(5), 4399–4404 (2011). [CrossRef] [PubMed]
  21. J. H. Schaffner and W. B. Bridges, “Intermodulation distorsion in high dynamic range microwave fiber-optic links with linearized modulators,” J. Lightwave Technol.11(1), 3–6 (1993). [CrossRef]
  22. M. Alouini, M. Vallet, M. Brunel, F. Bretenaker, and A. Le Floch, “Tunable absolute-frequency laser at 1.5µm,” Electron. Lett.36(21), 1780–1782 (2000). [CrossRef]
  23. T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator,” Opt. Lett.32(11), 1515–1517 (2007). [CrossRef] [PubMed]
  24. I. Morohashi, T. Sakamoto, H. Sotobayashi, T. Kawanishi, and I. Hosako, “Broadband wavelength-tunable ultrashort pulse source using a Mach-Zehnder modulator and dispersion-flattened dispersion-decreasing fiber,” Opt. Lett.34(15), 2297–2299 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited