OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 19 — Sep. 12, 2011
  • pp: 17960–17965

Lasing at exciton transition in optically pumped gallium nitride nanopillars

Ming-Hua Lo, Yuh-Jen Cheng, Mei-Chun Liu, Hao-Chung Kuo, and Shing Chung Wang  »View Author Affiliations


Optics Express, Vol. 19, Issue 19, pp. 17960-17965 (2011)
http://dx.doi.org/10.1364/OE.19.017960


View Full Text Article

Enhanced HTML    Acrobat PDF (1010 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the observation of room temperature lasing action in optically pumped GaN nanopillars. The nanopillars were fabricated by patterned etching and crystalline regrowth from a GaN substrate. When nanopillars were optically excited, a narrow emission peak emerged from the broad spontaneous emission background. The increasing rate is nine times faster than that of the spontaneous emission background, showing the onset of lasing action. The lasing occurs right at the center of spontaneous emission rather than the often reported redshifted wavelength. A spectroscopic ellipsometry analysis indicates that the gain of lasing action is provided by exciton transition.

© 2011 OSA

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(140.7240) Lasers and laser optics : UV, EUV, and X-ray lasers
(160.0160) Materials : Materials
(160.3380) Materials : Laser materials
(160.6000) Materials : Semiconductor materials

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: June 23, 2011
Revised Manuscript: August 8, 2011
Manuscript Accepted: August 10, 2011
Published: August 29, 2011

Citation
Ming-Hua Lo, Yuh-Jen Cheng, Mei-Chun Liu, Hao-Chung Kuo, and Shing Chung Wang, "Lasing at exciton transition in optically pumped gallium nitride nanopillars," Opt. Express 19, 17960-17965 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-19-17960


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Kuykendall, P. Pauzauskie, S. K. Lee, Y. F. Zhang, J. Goldberger, and P. Yang, “Metalorganic chemical vapor deposition route to GaN nanowires with triangular cross sections,” Nano Lett.3(8), 1063–1066 (2003). [CrossRef]
  2. F. Qian, S. Gradečak, Y. Li, C.-Y. Wen, and C. M. Lieber, “Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes,” Nano Lett.5(11), 2287–2291 (2005). [CrossRef] [PubMed]
  3. K. Kishino, H. Sekiguchi, and A. Kikuchi, “Improved Ti-mask selective-area growth (SAG) by rf-plasmaassisted molecular beam epitaxy demonstrating extremely uniform GaN nanocolumn arrays,” J. Cryst. Growth311(7), 2063–2068 (2009). [CrossRef]
  4. S. D. Hersee, X. Sun, and X. Wang, “The controlled growth of GaN nanowires,” Nano Lett.6(8), 1808–1811 (2006). [CrossRef] [PubMed]
  5. N. Thillosen, K. Sebald, H. Hardtdegen, R. Meijers, R. Calarco, S. Montanari, N. Kaluza, J. Gutowski, and H. Lüth, “The state of strain in single GaN nanocolumns as derived from micro-photoluminescence measurements,” Nano Lett.6(4), 704–708 (2006). [CrossRef] [PubMed]
  6. E. Calleja, M. Sánchez-García, F. J. Sánchez, F. Calle, F. B. Naranjo, E. Muñoz, U. Jahn, and K. Ploog, “Luminescence properties and defects in GaN nanocolumns grown by molecular beam epitaxy,” Phys. Rev. B62(24), 16826–16834 (2000). [CrossRef]
  7. T. Kouno, K. Kishino, K. Yamano, and A. Kikuchi, “Two-dimensional light confinement in periodic InGaN/GaN nanocolumn arrays and optically pumped blue stimulated emission,” Opt. Express17(22), 20440–20447 (2009). [CrossRef] [PubMed]
  8. J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. D. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater.1(2), 106–110 (2002). [CrossRef] [PubMed]
  9. H.-J. Choi, J. C. Johnson, R. He, S.-K. Lee, F. Kim, P. Pauzauskie, J. Goldberger, R. J. Saykally, and P. Yang, “Self-Organized GaN Quantum Wire UV Lasers,” J. Phys. Chem. B107(34), 8721–8725 (2003). [CrossRef]
  10. S. Gradečak, F. Qian, Y. Li, H.-G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett.87(17), 173111 (2005). [CrossRef]
  11. S. Shokhovets, K. Köhler, O. Ambacher, and G. Gobsch, “Observation of Fermi-edge excitons and exciton-phonon complexes in the optical response of heavily doped n-type wurtzite GaN,” Phys. Rev. B79(4), 045201 (2009). [CrossRef]
  12. A. J. Fischer, W. Shan, J. J. Song, Y. C. Chang, R. Horning, and B. Goldenberg, “Temperature-dependent absorption measurements of excitons in GaN epilayers,” Appl. Phys. Lett.71(14), 1981–1983 (1997). [CrossRef]
  13. J. F. Muth, J. H. Lee, I. K. Smagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett.71(18), 2572–2574 (1997). [CrossRef]
  14. G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78–4.77 eV) by spectroscopic ellipsometry and the optical transmission method,” Appl. Phys. Lett.70(24), 3209–3211 (1997). [CrossRef]
  15. M. Tchounkeu, O. Briot, B. Gil, J. P. Alexis, and R.-L. Aulombard, “Optical properties of GaN epilayers on sapphire,” J. Appl. Phys.80(9), 5352–5360 (1996). [CrossRef]
  16. O. Gluschenkov, J. M. Myoung, K. H. Shim, K. Kimb, Z. G. Figen, J. Gao, and J. G. Eden, “Stimulated emission at 300 K from photopumped GaN grown by plasma-assisted molecular beam epitaxy with an inductively coupled plasma source,” Appl. Phys. Lett.70(7), 811–813 (1997). [CrossRef]
  17. F. Binet, J. Y. Duboz, J. Off, and F. Scholz, “High-excitation photoluminescence in GaN: hot-carrier effects and the Mott transition,” Phys. Rev. B60(7), 4715–4722 (1999). [CrossRef]
  18. S. Bidnyk, T. J. Schmidt, B. D. Little, and J. J. Song, “Near-threshold gain mechanisms in GaN thin films in the temperature range of 20–700 K,” Appl. Phys. Lett.74(1), 1–3 (1999). [CrossRef]
  19. K. Kazlauskas, G. Tamulaitis, A. Žukauskas, T. Suski, P. Perlin, M. Leszczynski, P. Prystawko, and I. Grzegory, “Stimulated emission due to spatially separated electron-hole plasma and exciton system in homoepitaxial GaN,” Phys. Rev. B69(24), 245316 (2004). [CrossRef]
  20. X. Zhang, P. Kung, A. Saxler, D. Walker, and M. Razeghi, “Observation of room temperature surface-emitting stimulated emission from GaN:Ge by optical pumping,” J. Appl. Phys.80(11), 6544–6546 (1996). [CrossRef]
  21. Y. C. Chang, Y.-L. Li, D. B. Thomson, and R. F. Davis, “Phonon-assisted stimulated emission from pendeoepitaxy GaN stripes grown on 6H-SiC substrates,” Appl. Phys. Lett.91(5), 051119 (2007). [CrossRef]
  22. W. van Roosbroeck and W. Shockley, “Photon-radiative recombination of electrons and holes in Germanium,” Phys. Rev.94(6), 1558–1560 (1954). [CrossRef]
  23. C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett.98(14), 143902 (2007). [CrossRef] [PubMed]
  24. M. Sakai, Y. Inose, K. Ema, T. Ohtsuki, H. Sekiguchi, A. Kikuchi, and K. Kishino, “Random laser action in GaN nanocolumns,” Appl. Phys. Lett.97(15), 151109 (2010). [CrossRef]
  25. F. Binet, J. Y. Duboz, E. Rosencher, F. Scholz, and V. Harle, “Mechanisms of recombination in GaN photodetectors,” Appl. Phys. Lett.69(9), 1202–1204 (1996). [CrossRef]
  26. J. S. Im, A. Moritz, F. Steuber, V. Harle, F. Scholz, and A. Hangleiter, “Radiative carrier lifetime, momentum matrix element, and hole effective mass in GaN,” Appl. Phys. Lett.70(5), 631 (1997). [CrossRef]
  27. J. B. Schlager, N. A. Sanford, K. A. Bertness, and A. Roshko, “Injection-level-dependent internal quantum efficiency and lasing in low-defect GaN nanowires,” J. Appl. Phys.109(4), 044312 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited