OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 19 — Sep. 12, 2011
  • pp: 17966–17972

Mechanical tuning of whispering gallery modes over a 0.5 THz tuning range with MHz resolution in a silica microsphere at cryogenic temperatures

Khodadad N. Dinyari, Russell J. Barbour, D. Andrew Golter, and Hailin Wang  »View Author Affiliations

Optics Express, Vol. 19, Issue 19, pp. 17966-17972 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2087 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally demonstrate the mechanical tuning of whispering gallery modes in a 40 μm diameter silica microsphere at 10K, over a tuning range of 450 GHz and with a resolution less than 10 MHz. This is achieved by mechanically stretching the stems of a double-stemmed silica microsphere with a commercially available piezo-driven nano-positioner. The large tuning range is made possible by the millimeter long slip-stick motion of the nano-positioner. The ultrafine tuning resolution, corresponding to sub-picometer changes in the sphere diameter, is enabled by the use of relatively long and thin fiber stems, which reduces the effective Poisson ratio of the combined sphere-stem system to approximately 0.0005. The mechanical tuning demonstrated here removes a major obstacle for the use of ultrahigh Q-factor silica microspheres in cavity QED studies of solid state systems and, in particular, cavity QED studies of nitrogen vacancy centers in diamond.

© 2011 OSA

OCIS Codes
(270.5580) Quantum optics : Quantum electrodynamics
(140.3948) Lasers and laser optics : Microcavity devices

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 8, 2011
Revised Manuscript: August 17, 2011
Manuscript Accepted: August 22, 2011
Published: August 29, 2011

Khodadad N. Dinyari, Russell J. Barbour, D. Andrew Golter, and Hailin Wang, "Mechanical tuning of whispering gallery modes over a 0.5 THz tuning range with MHz resolution in a silica microsphere at cryogenic temperatures," Opt. Express 19, 17966-17972 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and non-linear properties of optical whispering-gallery modes,” Phys. Lett. A137(7-8), 393–397 (1989). [CrossRef]
  2. K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003). [CrossRef] [PubMed]
  3. B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science319(5866), 1062–1065 (2008). [CrossRef] [PubMed]
  4. X. Fan, P. Palinginis, S. Lacey, H. Wang, and M. C. Lonergan, “Coupling semiconductor nanocrystals to a fused-silica microsphere: a quantum-dot microcavity with extremely high Q factors,” Opt. Lett.25(21), 1600–1602 (2000). [CrossRef] [PubMed]
  5. Y.-S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett.6(9), 2075–2079 (2006). [CrossRef] [PubMed]
  6. C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, “Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond,” Appl. Phys. Lett.91(20), 201112 (2007). [CrossRef]
  7. S. Schietinger, T. Schröder, and O. Benson, “One-by-one coupling of single defect centers in nanodiamonds to high-Q modes of an optical microresonator,” Nano Lett.8(11), 3911–3915 (2008). [CrossRef] [PubMed]
  8. H. Takashima, T. Asai, K. Toubaru, M. Fujiwara, K. Sasaki, and S. Takeuchi, “Fiber-microsphere system at cryogenic temperatures toward cavity QED using diamond NV centers,” Opt. Express18(14), 15169–15173 (2010). [CrossRef] [PubMed]
  9. K.-M. C. Fu, C. Santori, P. E. Barclay, I. Aharonovich, S. Prawer, N. Meyer, A. M. Holm, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers in diamond to a gap waveguide,” Appl. Phys. Lett.93(23), 234107 (2008). [CrossRef]
  10. M. Barth, N. Nüsse, B. Löchel, and O. Benson, “Controlled coupling of a single-diamond nanocrystal to a photonic crystal cavity,” Opt. Lett.34(7), 1108–1110 (2009). [CrossRef] [PubMed]
  11. P. E. Barclay, K. M. C. Fu, C. Santori, and R. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett.95(19), 191115 (2009). [CrossRef]
  12. D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett.10(10), 3922–3926 (2010). [CrossRef] [PubMed]
  13. A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics5(5), 301–305 (2011). [CrossRef]
  14. M. Larsson, K. N. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett.9(4), 1447–1450 (2009). [CrossRef] [PubMed]
  15. S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett.87(14), 141105 (2005). [CrossRef]
  16. V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun.145(1-6), 86–90 (1998). [CrossRef]
  17. W. von Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefèvre-Seguin, “Frequency tuning of the whispering-gallery modes of silica microspheres for cavity quantum electrodynamics and spectroscopy,” Opt. Lett.26(3), 166–168 (2001). [CrossRef] [PubMed]
  18. W. von Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefèvre-Seguin, “Tunable whispering gallery modes for spectroscopy and CQED experiments,” N. J. Phys.3, 14 (2001). [CrossRef]
  19. M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett.103(5), 053901 (2009). [CrossRef] [PubMed]
  20. S. Lacey, H. Wang, D. H. Foster, and J. U. Nöckel, “Directional tunneling escape from nearly spherical optical resonators,” Phys. Rev. Lett.91(3), 033902 (2003). [CrossRef] [PubMed]
  21. R. J. Barbour, K. N. Dinyari, and H. Wang, “A composite microcavity of diamond nanopillar and deformed silica microsphere with enhanced evanescent decay length,” Opt. Express18(18), 18968–18974 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited