OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 19 — Sep. 12, 2011
  • pp: 17985–17995

Analyses of wavelength- and polarization-division multiplexed transmission characteristics of optical quadrature-amplitude-modulation signals

Kazuro Kikuchi  »View Author Affiliations


Optics Express, Vol. 19, Issue 19, pp. 17985-17995 (2011)
http://dx.doi.org/10.1364/OE.19.017985


View Full Text Article

Enhanced HTML    Acrobat PDF (933 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically study optical transmission characteristics of wavelength-division multiplexed (WDM) and polarization-multiplexed (POLMUX) signals using high-order optical quadrature-amplitude-modulation (QAM) formats up to 256. First, we conduct intensive computer simulations on bit-error rates (BERs) in WDM POLMUX QAM transmission systems and find maximum transmission distances under the influence of nonlinear impairments. Next, to elucidate the physics behind such nonlinear transmission characteristics, we calculate the distribution of constellation points for QAM signals as functions of the the launched power, the transmission distance, and the symbol rate. These results lead to a closed-form formula for BER of any QAM formats. From such formula, we derive simple laws that determine the maximum transmission distance and the optimum power as functions of the QAM order and the symbol rate. These laws can well explain the simulation results.

© 2011 OSA

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2920) Fiber optics and optical communications : Homodyning

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: July 19, 2011
Revised Manuscript: August 8, 2011
Manuscript Accepted: August 19, 2011
Published: August 29, 2011

Citation
Kazuro Kikuchi, "Analyses of wavelength- and polarization-division multiplexed transmission characteristics of optical quadrature-amplitude-modulation signals," Opt. Express 19, 17985-17995 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-19-17985


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. H. Gnauck, P. J. Winzer, S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “10×224-Gb/s WDM transmission of 28-Gbaud PDM 16-QAM on a 50-GHz grid transmission over 1,200 km of fiber,” in 2010 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2010), PDPB8.
  2. A. Sano, T. Kobayashi, K. Ishihara, H. Masuda, S. Yamamoto, K. Mori, E. Yamazaki, E. Yoshida, Y. Miyamoto, T. Yamada, and H. Yamazaki, “240-Gb/s polarization-multiplexed 64-QAM modulation and blind detection using PLC-LN hybrid integrated modulator and digital coherent receiver,” in Proceedings of European Conference on Optical Communication (Sept.2009), PD2.2.
  3. M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, and M. Yoshida, “256 QAM (64 Gbit/s) coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz,” in 2010 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2010), OMJ5.
  4. D.-S. Ly-Gagnon, S. Tsukamoto, K. Katoh, and K. Kikuchi, “Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation,” J. Lightwave Technol.24, 12–21 (2006). [CrossRef]
  5. H. Sun, K.-T. Wu, and K. Roberts, “Real-time measurements of a 40 Gb/s coherent system,” Opt. Express16, 873–879 (2008). [CrossRef] [PubMed]
  6. K. Kikuchi, “Ultra long-haul optical transmission characteristics of wavelength-division multiplexed dual-polarisation 16-quadrature-amplitude-modulation signals,” Electron. Lett.46, 433–434 (2010). [CrossRef]
  7. S. G. Evangelides, L. F. Mollenauer, J. P. Gordon, and N. S. Bergano, “Polarization multiplexing with solitons,” J. Lightwave Technol.10, 28–35 (1992). [CrossRef]
  8. T. Kato, M. Hirano, M. Onishi, and M. Nishimura, “Ultra-low nonlinearity low-loss pure silica core fibre for long-haul WDM transmission,” Electron. Lett.35, 1615–1617 (1999). [CrossRef]
  9. M. Seimetz, “Laser linewidth limitations for optical systems with high order modulation employing feed forward digital carrier phase estimation,” in 2008 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2008), OTuM2.
  10. J. P. Gordon and L. F. Mollenauer, “Phase noise in photonic communications systems using linear amplifiers,” Opt. Lett.15, 1351–1353 (1990). [CrossRef] [PubMed]
  11. E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technol.26, 3416–3425 (2008). [CrossRef]
  12. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 1989), Chap. 5.
  13. P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of nonlinear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett.23, 742–744 (2011). [CrossRef]
  14. X. Chen and W. Shieh, “Closed-form expressions for nonlinear transmission performance of densely spaced coherent OFDM systems,” Opt. Express18, 19039–19054 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited