OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 19 — Sep. 12, 2011
  • pp: 17996–18003

Measuring frequency noise and intrinsic linewidth of a room-temperature DFB quantum cascade laser

S. Bartalini, S. Borri, I. Galli, G. Giusfredi, D. Mazzotti, T. Edamura, N. Akikusa, M. Yamanishi, and P. De Natale  »View Author Affiliations


Optics Express, Vol. 19, Issue 19, pp. 17996-18003 (2011)
http://dx.doi.org/10.1364/OE.19.017996


View Full Text Article

Enhanced HTML    Acrobat PDF (1162 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The frequency-noise power spectral density of a room-temperature distributed-feedback quantum cascade laser emitting at λ = 4.36 μm has been measured. An intrinsic linewidth value of 260 Hz is retrieved, in reasonable agreement with theoretical calculations. A noise reduction of about a factor 200 in most of the frequency interval is also found, with respect to a cryogenic laser at the same wavelength. A quantitative treatment shows that it can be explained by a temperature-dependent mechanism governing the transport processes in resonant tunnelling devices. This confirms the predominant effect of the heterostructure in determining shape and magnitude of the frequency noise spectrum in QCLs.

© 2011 OSA

OCIS Codes
(270.2500) Quantum optics : Fluctuations, relaxations, and noise
(290.3700) Scattering : Linewidth
(140.3425) Lasers and laser optics : Laser stabilization
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: August 3, 2011
Revised Manuscript: August 18, 2011
Manuscript Accepted: August 19, 2011
Published: August 29, 2011

Citation
S. Bartalini, S. Borri, I. Galli, G. Giusfredi, D. Mazzotti, T. Edamura, N. Akikusa, M. Yamanishi, and P. De Natale, "Measuring frequency noise and intrinsic linewidth of a room-temperature DFB quantum cascade laser," Opt. Express 19, 17996-18003 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-19-17996


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow–Townes limit,” Phys. Rev. Lett.104, 083904 (2010). [CrossRef] [PubMed]
  2. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264, 553–556 (1994). [CrossRef] [PubMed]
  3. C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron.18, 259–264 (1982). [CrossRef]
  4. M. Yamanishi, T. Edamura, K. Fujita, N. Akikusa, and H. Kan, “Theory of the intrinsic linewidth of quantum-cascade lasers: hidden reason for the narrow linewidth and line-broadening by thermal photons,” IEEE J. Quantum Electron.44, 12–29 (2008). [CrossRef]
  5. D. S. Elliott, R. Roy, and S. J. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A26, 12–18 (1982). [CrossRef]
  6. S. Borri, S. Bartalini, P. Cancio, I. Galli, G. Giusfredi, D. Mazzotti, M. Yamanishi, and P. De Natale, “Frequency-noise dynamics of mid-infrared quantum cascade lasers,” IEEE J. Quantum Electron.47, 984–988 (2011). [CrossRef]
  7. R. M. Williams, J. F. Kelly, J. S. Hartman, S. W. Sharpe, M. S. Taubman, J. L. Hall, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Kilohertz linewidth from frequency-stabilized mid-infrared quantum cascade lasers,” Opt. Lett.24, 1844–1846 (1999). [CrossRef]
  8. T. L. Myers, R. M. Williams, M. S. Taubman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-running frequency stability of mid-infrared quantum cascade lasers,” Opt. Lett.27, 170–172 (2002). [CrossRef]
  9. K. Fujita, T. Edamura, N. Akikusa, A. Sugiyama, T. Ochiai, S. Furuta, A. Ito, M. Yamanishi, and H. Kan, “Quantum cascade lasers based on single phonon-continuum depopulation structures,” Proc. SPIE7230, 723016 (2009). [CrossRef]
  10. K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “Room temperature, continuous-wave operation of quantum cascade lasers with single phonon resonance-continuum depopulation structures grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett.91, 141121 (2007). [CrossRef]
  11. K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “High-performance λ ∼ 8.6 μm quantum cascade lasers with single phonon-continuum depopulation structures,” IEEE J. Quantum Electron.46, 683–688 (2010). [CrossRef]
  12. K. G. Libbrecht and J. L. Hall, “A low-noise high-speed diode laser current controller,” Rev. Sci. Instrum.64, 2133–2135 (1993). [CrossRef]
  13. J. S. Yu, S. Slivken, A. Evans, L. Doris, and M. Razeghi, “High-power continuous-wave operation of a 6 μm quantum-cascade laser at room temperature,” Appl. Phys. Lett.83, 2503–2505 (2003). [CrossRef]
  14. A. Vasanelli, A. Leuliet, C. Sirtori, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, B. Vinter, M. Giovannini, and J. Faist, “Role of elastic scattering mechanisms in GaInAs/AlInAs quantum cascade lasers,” Appl. Phys. Lett., 89, 172120 (2006). [CrossRef]
  15. K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, and S. Furuta, “Extremely high T0-values (≃450 K) of long-wavelength (≃ 15 μm), low-threshold-current-density quantum-cascade lasers based on the indirect pump scheme,” Appl. Phys. Lett.97, 201109 (2010).
  16. D. Hofstetter, M. Beck, T. Aellen, and J. Faist, “High-temperature operation of distributed feedback quantum-cascade lasers at 5.3 μm,” Appl. Phys. Lett.78, 396–398 (2001). [CrossRef]
  17. M. S. Vitiello, T. Gresch, A. Lops, V. Spagnolo, G. Scamarcio, N. Hoyler, M. Giovannini, and J. Faist, “Influence of InAs, AlAs δ layers on the optical, electronic, and thermal characteristics of strain-compensated GaInAs/AlInAs quantum-cascade lasers,” Appl. Phys. Lett.91, 161111 (2007). [CrossRef]
  18. M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Temperature dependence of thermal conductivity and boundary resistance in THz quantum cascade lasers,” IEEE J. Select Top. Quantum Electron.14, 431–435 (2008). [CrossRef]
  19. M. S. Vitiello, V. Spagnolo, G. Scamarcio, A. Lops, Q. Yang, C. Manz, and J. Wagner, “Experimental investigation of the lattice and electronic temperatures in Ga0.47In0.53As/Al0.62Ga0.38As1–xSbx quantum-cascade lasers,” Appl. Phys. Lett.90, 121109 (2007). [CrossRef]
  20. G. Giusfredi, S. Bartalini, S. Borri, P. Cancio, I. Galli, D. Mazzotti, and P. De Natale, “Saturated-absorption cavity ring-down spectroscopy,” Phys. Rev. Lett.104, 110801 (2010). [CrossRef] [PubMed]
  21. S. Bartalini, S. Borri, and P. De Natale, “Doppler-free polarization spectroscopy with a quantum cascade laser at 4.3 μm,” Opt. Express17, 7440–7449 (2009). [CrossRef] [PubMed]
  22. M. S. Taubman, T. L. Myers, B. D. Cannon, R. M. Williams, F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho , “Frequency stabilization of quantum cascade lasers by use of optical cavities” Opt. Lett.27, 2164–2166 (2002). [CrossRef]
  23. G. Di Domenico, S. Schilt, and P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Opt.49, 4801–4807 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited