OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 19 — Sep. 12, 2011
  • pp: 18036–18048

Two-photon excitation and stimulated emission depletion by a single wavelength

Teodora Scheul, Ciro D’Amico, Irène Wang, and Jean-Claude Vial  »View Author Affiliations

Optics Express, Vol. 19, Issue 19, pp. 18036-18048 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1624 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Super-resolved optical microscopy using stimulated emission depletion (STED) is now a mature method for imaging fluorescent samples at scales beyond the diffraction limit. Nevertheless the practical implementation of STED microscopy is complex and costly, especially since it requires laser beams with different wavelengths for excitation and depletion. In this paper, we propose using a single wavelength to induce both processes. We studied stimulated emission depletion of 4-dicyanomethylene-2-methyl-6-p-dimethylaminostyryl-4H-pyran (DCM) dye with a laser delivering a single wavelength in the near infrared. Fluorescence was excited by two photon absorption with a femtosecond pulse, then depleted by one photon stimulated emission with a stretched pulse. Time-resolved fluorescence decay measurements were performed to determine the depletion efficiency and to prove that fluorescence quenching is not affected by side effects. Numerical simulations show that this method can be applied to super-resolved microscopy.

© 2011 OSA

OCIS Codes
(000.2170) General : Equipment and techniques
(190.0190) Nonlinear optics : Nonlinear optics
(260.2510) Physical optics : Fluorescence
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(350.5730) Other areas of optics : Resolution

ToC Category:
Nonlinear Optics

Original Manuscript: June 7, 2011
Revised Manuscript: July 20, 2011
Manuscript Accepted: July 27, 2011
Published: August 30, 2011

Virtual Issues
Vol. 6, Iss. 10 Virtual Journal for Biomedical Optics

Teodora Scheul, Ciro D’Amico, Irène Wang, and Jean-Claude Vial, "Two-photon excitation and stimulated emission depletion by a single wavelength," Opt. Express 19, 18036-18048 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Heintzmann, T. M. Jovin, and C. Cremer, “Saturated patterned excitation microscopy--a concept for optical resolution improvement,” J. Opt. Soc. Am. A 19(8), 1599–1609 (2002). [CrossRef] [PubMed]
  2. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994). [CrossRef] [PubMed]
  3. S. W. Hell and M. Kroug, “Ground-state-depletion fluorscence microscopy: A concept for breaking the diffraction resolution limit,” Appl. Phys. B 60(5), 495–497 (1995). [CrossRef]
  4. M. G. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005). [CrossRef] [PubMed]
  5. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006). [CrossRef] [PubMed]
  6. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006). [CrossRef] [PubMed]
  7. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006). [CrossRef] [PubMed]
  8. B. Hein, K. I. Willig, C. A. Wurm, V. Westphal, S. Jakobs, and S. W. Hell, “Stimulated emission depletion nanoscopy of living cells using SNAP-tag fusion proteins,” Biophys. J. 98(1), 158–163 (2010). [CrossRef] [PubMed]
  9. U. V. Nägerl, K. I. Willig, B. Hein, S. W. Hell, and T. Bonhoeffer, “Live-cell imaging of dendritic spines by STED microscopy,” Proc. Natl. Acad. Sci. U.S.A. 105(48), 18982–18987 (2008). [CrossRef] [PubMed]
  10. K. I. Willig, B. Harke, R. Medda, and S. W. Hell, “STED microscopy with continuous wave beams,” Nat. Methods 4(11), 915–918 (2007). [CrossRef] [PubMed]
  11. V. Westphal, C. M. Blanca, M. Dyba, L. Kastrup, and S. W. Hell, “Laser-diode-stimulated emission depletion microscopy,” Appl. Phys. Lett. 82(18), 3125–3127 (2003). [CrossRef]
  12. D. Wildanger, E. Rittweger, L. Kastrup, and S. W. Hell, “STED microscopy with a supercontinuum laser source,” Opt. Express 16(13), 9614–9621 (2008). [CrossRef] [PubMed]
  13. E. Auksorius, B. R. Boruah, C. Dunsby, P. M. P. Lanigan, G. Kennedy, M. A. A. Neil, and P. M. W. French, “Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging,” Opt. Lett. 33(2), 113–115 (2008). [CrossRef] [PubMed]
  14. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990). [CrossRef] [PubMed]
  15. G. Moneron and S. W. Hell, “Two-photon excitation STED microscopy,” Opt. Express 17(17), 14567–14573 (2009). [CrossRef] [PubMed]
  16. J. B. Ding, K. T. Takasaki, and B. L. Sabatini, “Supraresolution imaging in brain slices using stimulated-emission depletion two-photon laser scanning microscopy,” Neuron 63(4), 429–437 (2009). [CrossRef] [PubMed]
  17. Q. Li, S. S. Wu, and K. C. Chou, “Subdiffraction-limit two-photon fluorescence microscopy for GFP-tagged cell imaging,” Biophys. J. 97(12), 3224–3228 (2009). [CrossRef] [PubMed]
  18. S. C. Baer, “Single wavelength stimulated emission depletion microscopy,” U.S. Patent 7,816,654 B2 (Oct. 19, 2010).
  19. M. Lesiecki, F. Asmar, J. M. Drake, and D. M. Camaioni, “Photoproperties of DCM,” J. Lumin. 31–32, 546–548 (1984). [CrossRef]
  20. J. Kuśba, V. Bogdanov, I. Gryczynski, and J. R. Lakowicz, “Theory of light quenching: effects of fluorescence polarization, intensity, and anisotropy decays,” Biophys. J. 67(5), 2024–2040 (1994). [CrossRef] [PubMed]
  21. R. J. Marsh, D. A. Armoogum, and A. J. Bain, “Stimulated emission depletion of two-photon excited states,” Chem. Phys. Lett. 366(3-4), 398–405 (2002). [CrossRef]
  22. S. W. Hell, “Increasing the resolution of far-field fluorescence light microscopy by point-spread-function engineering,” Top. Fluoresc. Spectrosc. 5, 361–426 (2002). [CrossRef]
  23. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000). [CrossRef] [PubMed]
  24. C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13(3), 481–491 (1996). [CrossRef]
  25. J. M. Drake, M. L. Lesiecki, and D. M. Camaioni, “Photophysics and cis-trans isomerization of DCM,” Chem. Phys. Lett. 113(6), 530–534 (1985). [CrossRef]
  26. I. Gryczynski, V. Bogdanov, and J. R. Lakowicz, “Light quenching of tetraphenylbutadiene fluorescence observed during two-photon excitation,” J. Fluoresc. 3(2), 85–92 (1993). [CrossRef]
  27. I. Gryczynski, J. Kuśba, V. Bogdanov, and J. R. Lakowicz, “Quenching of fluorescence by light: A new method to control the excited-state lifetimes and orientations of fluorophores,” J. Fluoresc. 4(1), 103–109 (1994). [CrossRef]
  28. E. Rittweger, B. R. Rankin, V. Westphal, and S. W. Hell, “Fluorescence depletion mechanisms in super-resolving STED microscopy,” Chem. Phys. Lett. 442(4-6), 483–487 (2007). [CrossRef]
  29. P. R. Hammond, “Laser dye DCM, its spectral properties, synthesis and comparison with other dyes in the red,” Opt. Commun. 29(3), 331–333 (1979). [CrossRef]
  30. A. J. Bain, R. J. Marsh, D. A. Armoogum, O. Mongin, L. Porrès, and M. Blanchard-Desce, “Time-resolved stimulated emission depletion in two-photon excited states,” Biochem. Soc. Trans. 31(5), 1047–1051 (2003). [CrossRef] [PubMed]
  31. M. Dyba, T. A. Klar, S. Jakobs, and S. W. Hell, “Ultrafast dynamics microscopy,” Appl. Phys. Lett. 77(4), 597–599 (2000). [CrossRef]
  32. T. A. Klar and S. W. Hell, “Subdiffraction resolution in far-field fluorescence microscopy,” Opt. Lett. 24(14), 954–956 (1999). [CrossRef] [PubMed]
  33. X. Guo and A. Xia, “Ultrafast excited states relaxation dynamics in solution investigated by stimulated emission from a styryl dye,” J. Lumin. 122–123, 532–535 (2007). [CrossRef]
  34. K. D. Piatkevich, J. Hulit, O. M. Subach, B. Wu, A. Abdulla, J. E. Segall, and V. V. Verkhusha, “Monomeric red fluorescent proteins with a large Stokes shift,” Proc. Natl. Acad. Sci. U.S.A. 107(12), 5369–5374 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited