OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 19 — Sep. 12, 2011
  • pp: 18091–18108

Mapping of Ising models onto injection-locked laser systems

Shoko Utsunomiya, Kenta Takata, and Yoshihisa Yamamoto  »View Author Affiliations


Optics Express, Vol. 19, Issue 19, pp. 18091-18108 (2011)
http://dx.doi.org/10.1364/OE.19.018091


View Full Text Article

Enhanced HTML    Acrobat PDF (1208 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a mapping protocol to implement Ising models in injection-locked laser systems. The proposed scheme is based on optical coherent feedback and can be potentially applied for large-scale Ising problems.

© 2011 OSA

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(140.3520) Lasers and laser optics : Lasers, injection-locked
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: April 21, 2011
Revised Manuscript: July 3, 2011
Manuscript Accepted: August 11, 2011
Published: August 31, 2011

Citation
Shoko Utsunomiya, Kenta Takata, and Yoshihisa Yamamoto, "Mapping of Ising models onto injection-locked laser systems," Opt. Express 19, 18091-18108 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-19-18091


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (W. H. Freeman and Company, 1979).
  2. K. Binder and A. A. Young, “Spin glasses: experimental facts, theoretical concepts, and open questions,” Rev. Mod. Phys.58, 801–976 (1986). [CrossRef]
  3. V. Dotsenko, Introduction to the Replica Theory of Disordered Statistical Systems (Cambridge University Press, 2000). [CrossRef]
  4. H. Nishimori, Statistical Physics of Spin Glasses and Information Processing: An Introduction (Oxford University Press, 2001). [CrossRef]
  5. A. Das and B. K. Chakrabarti, “Colloquium: quantum annealing and analog quantum computation,” Rev. Mod. Phys.80, 1061–1081 (2008). [CrossRef]
  6. P. Ray, B. K. Chakrabarti, and A. Chakrabarti, “Sherrington–Kirkpatrick model in a transverse field: absence of replica symmetry breaking due to quantum fluctuations,” Phys. Rev. B39, 11828–11832 (1989). [CrossRef]
  7. B. Appoloni, C. Carvalho, and D. de Falco, “Quantum stochastic optimization,” Stochastic Proc. Appl.33, 233–244 (1989). [CrossRef]
  8. R. Martonak, G. E. Santoro, and E. Tosatti, “Quantum annealing by the path-integral Monte Carlo method: the two-dimensional random Ising model,” Phys. Rev. B66, 094203 (2002). [CrossRef]
  9. G. E. Santoro, R. Martonak, E. Tosatti, and R. Car, “Theory of quantum annealing of an Ising spin glass,” Science295(5564), 2427–2430 (2002). [CrossRef] [PubMed]
  10. G. E. Santoro and E. Tosatti, “Quantum to classical and back,” Nat. Phys.3, 593–594 (2007). [CrossRef]
  11. R. D. Somma and C. D. Batista, “Quantum approach to classical statistical mechanics,” Phys. Rev. Lett.99, 030603 (2007). [CrossRef] [PubMed]
  12. J. Brooke, D. Bitko, T. F. Rosenbau, and G. Aeppli, “Quantum annealing of a disordered magnet,” Science284(5415), 779–781 (1999). [CrossRef] [PubMed]
  13. G. Aeppli and T. F. Rosenbaum, in Quantum Annealing and Related Optimization Methods, A. Das and B. K. Chakrabarti, eds. (Springer Verlag, 2005).
  14. M. Steffen, W. van Dam, T. Hogg, G. Breyta, and I. Chuang, “Experimental implementation of an adiabatic quantum optimization algorithm,” Phys. Rev. Lett.90, 067903 (2003). [CrossRef] [PubMed]
  15. T. Byrnes, K. Yan, and Y. Yamamoto, “Optimization using Bose-Einstein condensation and measurement-feedback circuits,” arXiv:0909.2530v2.
  16. K. Yan, T. Byrnes, and Y. Yamamoto, “Kinetic Monte Carlo study of accelerated optimization problem search using Bose-Einstein condensates,” Prog. Inform.8, 1–9 (2011).
  17. F. Barahona, “On the computational complexity of Ising spin glass models,” J. Phys. A: Math. Gen.15, 3241–3253 (1982). [CrossRef]
  18. S. Kobayashi and T. Kimura, “Injection locking in AIGaAs semiconductor laser,” IEEE J. Quantum Electron.17(5), 681–689 (1981). [CrossRef]
  19. S. Kobayashi, Y. Yamamoto, and T. Kimura, “Optical FM signal amplification and FM noise reduction in an injection locked AlGaAs semiconductor laser,” Electron. Lett.17(22), 849–851 (1981). [CrossRef]
  20. L. Gillner, G. Bjork, and Y. Yamamoto, “Quantum noise properties of an injection-locked laser oscillator with pump-noise suppression and squeezed injection,” Phys. Rev A41(9), 5053–5065 (1990). [CrossRef] [PubMed]
  21. H. A. Haus and Y. Yamamoto, “Quantum noise of an injection-locked laser oscillator,” Phys. Rev. A29, 1261–1274 (1984). [CrossRef]
  22. M. Surgent, M. O. Scully, and W. E. Lamb, Laser Physics (Westview Press, 1978), Chap. 20, pp. 331–335.
  23. H. Haug, “Quantum-mechanical rate equations for semiconductor lasers,” Phys. Rev.184, 338–348 (1969). [CrossRef]
  24. S. F. Yu, Analysis and Design of Vertical Cavity Surface Emitting Laser (Wiley-Interscience, 2003), Chap. 8. [CrossRef]
  25. Y. Yamamoto, S. Machida, and O. Neilsson, “Amplitude squeezing in a pump-noise-suppressed laser oscillator,” Phys. Rev. A34, 4025–4042 (1986). [CrossRef] [PubMed]
  26. C. Weisbuch and B. Vinter, Quantum Semiconductor Structures: Fundamentals and Applications (Academic Press, 1991), Chap. 3, pp. 65–69.
  27. K. Takata, S. Utsunomiya, and Y. Yamamoto, “Transient time of an Ising machine based on injection-locked lasers: contribution of locking bandwidth and Zeeman component,” (to be submitted).
  28. S. D. Personick, “Receiver design for digital fiber optic communication systems, I,” Bell Syst. Tech. J.52(6), 843–874 (1973).
  29. S. Inoue, H. Ohzu, S. Machida, and Y. Yamamoto, “Quantum correlation between longitudinal mode intensities in a multimode squeezed semiconductor laser,” Phys. Rev. A46, 2757–2765 (1992). [CrossRef] [PubMed]
  30. A. P. Young, S. Knysh, and V. N. Smelyanskiy, “First-order phase transition in the quantum adiabatic algorithm,” Phys. Rev. Lett.104, 020502 (2010). [CrossRef] [PubMed]
  31. Y. Zhang, Y. Xia, Z. Man, and G. Guo, “Simulation of the Ising model, memory for Bell states and generation of four-atom entangled states in cavity QED,” Sci. China, Ser. G52, 700–707 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited