OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 19 — Sep. 12, 2011
  • pp: 18109–18115

Extraordinary optical transmission induced by electric resonance ring and its dynamic manipulation at far-infrared regime

ChengGang Hu, MingBo Pu, Xiong Li, Ming Wang, Qin Feng, and XianGang Luo  »View Author Affiliations

Optics Express, Vol. 19, Issue 19, pp. 18109-18115 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (884 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a design for a sub-wavelength hole array (SHA) decorated with an electric resonance ring (ERR) to realize angle-insensitive extraordinary optical transmission (EOT) at 9.7 μm. A net electric resonance in the whole MM plane, induced by the counter-circulating LC loops in each MM unit-cell, is proposed to have the primary responsibility for the EOT. By tuning the carrier density of an added doped-semiconductor that participates in the in-plane LC resonance, dynamic EOT manipulation and an electric-control turn-on/off function is obtained in our MM.

© 2011 OSA

OCIS Codes
(260.5740) Physical optics : Resonance
(160.3918) Materials : Metamaterials
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

Original Manuscript: June 13, 2011
Revised Manuscript: August 2, 2011
Manuscript Accepted: August 16, 2011
Published: August 31, 2011

ChengGang Hu, MingBo Pu, Xiong Li, Ming Wang, Qin Feng, and XianGang Luo, "Extraordinary optical transmission induced by electric resonance ring and its dynamic manipulation at far-infrared regime," Opt. Express 19, 18109-18115 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Sihvola, “Metamaterials in electromagnetics,” Metamaterials (Amst.) 1(1), 2–11 (2007). [CrossRef]
  2. E. Shamonina and L. Solymar, “Metamaterials: how the subject started,” Metamaterials (Amst.) 1(1), 12–18 (2007). [CrossRef]
  3. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999). [CrossRef]
  4. D. R. Smith and N. Kroll, “Negative refractive index in left-handed materials,” Phys. Rev. Lett. 85(14), 2933–2936 (2000). [CrossRef] [PubMed]
  5. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001). [CrossRef] [PubMed]
  6. S. Lim, C. Caloz, and T. Itoh, “Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth,” IEEE Trans. Microw. Theory Tech. 52(12), 2678–2690 (2004). [CrossRef]
  7. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006). [CrossRef] [PubMed]
  8. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006). [CrossRef] [PubMed]
  9. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  10. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944). [CrossRef]
  11. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  12. H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12(16), 3629–3651 (2004). [CrossRef] [PubMed]
  13. K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102(1), 013904 (2009). [CrossRef] [PubMed]
  14. X.- Yin, C.- Huang, Q.-J. Wang, and Y.-y. Zhu, “Transmission resonance in a composite plasmonic structure,” Phys. Rev. B 79(15), 153404 (2009). [CrossRef]
  15. H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79(2), 024304 (2009). [CrossRef]
  16. W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102(R) (2007). [CrossRef]
  17. J. M. Manceau, N. H. Shen, M. Kafesaki, C. M. Soukoulis, and S. Tzortzakis, “Dynamic response of metamaterials in the terahertz regime: blueshift tunability and broadband phase modulation,” Appl. Phys. Lett. 96(2), 021111 (2010). [CrossRef]
  18. A. B. Sproul and M. A. Green, “Improved value for the silicon intrinsic carrier concentration from 275 to 375 K,” J. Appl. Phys. 70(2), 846–854 (1991). [CrossRef]
  19. E. D. Palik and D. F. Edwards, Handbook of Optical Constants of Solids (1985).
  20. W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X.-C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98(18), 183901 (2007). [CrossRef] [PubMed]
  21. A. V. Krasavin, K. F. MacDonald, N. I. Zheludev, and A. V. Zayats, “High-contrast modulation of light with light by control of surface plasmon polariton wave coupling,” Appl. Phys. Lett. 85(16), 3369–3371 (2004). [CrossRef]
  22. C. Janke, J. G. Rivas, P. H. Bolivar, and H. Kurz, “All-optical switching of the transmission of electromagnetic radiation through subwavelength apertures,” Opt. Lett. 30(18), 2357–2359 (2005). [CrossRef] [PubMed]
  23. J. Dintinger, I. Robel, P. V. Kamat, C. Genet, and T. W. Ebbesen, “Terahertz all-optical molecule-plasmon modulation,” Adv. Mater. (Deerfield Beach Fla.) 18(13), 1645–1648 (2006). [CrossRef]
  24. T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, “Control of optical transmission through metals perforated with subwavelength hole arrays,” Opt. Lett. 24(4), 256–258 (1999). [CrossRef] [PubMed]
  25. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004). [CrossRef]
  26. S. Park and S. H. Song, “Polymeric variable optical attenuator based on long range surface plasmon polaritons,” Electron. Lett. 42(7), 402–404 (2006). [CrossRef]
  27. H.-T. Chen, H. Lu, A. K. Azad, R. D. Averitt, A. C. Gossard, S. A. Trugman, J. F. O’Hara, and A. J. Taylor, “Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays,” Opt. Express 16(11), 7641–7648 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited