OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 19 — Sep. 12, 2011
  • pp: 18149–18154

300 km-ultralong Raman fiber lasers using a distributed mirror for sensing applications

Hugo Martins, Manuel B. Marques, and Orlando Frazão  »View Author Affiliations


Optics Express, Vol. 19, Issue 19, pp. 18149-18154 (2011)
http://dx.doi.org/10.1364/OE.19.018149


View Full Text Article

Enhanced HTML    Acrobat PDF (715 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Several configurations of ultralong Raman fiber lasers (URFL) based on a distributed mirror combined with Bragg gratings or fiber loop mirrors are studied. Two continuous-wave URFL configurations, with single and cascaded cavities using fiber Bragg gratings as mirrors are explored for a 300 km long fiber. For optical sensing, the cavity length was optimized for 250 km using one of the gratings an intensity sensor. Another URFL configuration based in a fiber loop mirror is also reported. For optical sensing using a 300 km long fiber it is shown that the best choice is a hybrid configuration. The sensitivity of the FBG laser sensor range was from (76 ± 2) × 10−6 με−1 (for lower strain) to (9.0 ± 0.4) × 10−6 με−1 (for higher strain).

© 2011 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: June 14, 2011
Revised Manuscript: July 18, 2011
Manuscript Accepted: July 24, 2011
Published: August 31, 2011

Citation
Hugo Martins, Manuel B. Marques, and Orlando Frazão, "300 km-ultralong Raman fiber lasers using a distributed mirror for sensing applications," Opt. Express 19, 18149-18154 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-19-18149


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. G. Grubb, T. Strasser, W. Y. Cheung, W. A. Reed, V. Mizrahi, T. Erdogan, P. J. Lemaire, A. M. Vengsarkar, and D. J. Digiovanni Grubb, “High-Power 1.48 µm Cascaded Raman Laser in Germanosilicate Fibers,” Opt. Amp. Appl.18, 197–199 (1995).
  2. J. D. Ania-Castañón, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Ultralong Raman fiber lasers as virtually lossless optical media,” Phys. Rev. Lett.96(2), 023902 (2006). [CrossRef] [PubMed]
  3. J. D. Ania-Castañón, V. Karalekas, P. Harper, and S. K. Turitsyn, “Simultaneous spatial and spectral transparency in ultralong fiber lasers,” Phys. Rev. Lett.101(12), 123903 (2008). [CrossRef] [PubMed]
  4. S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett.103(13), 133901 (2009). [CrossRef] [PubMed]
  5. A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett.35(7), 1100–1102 (2010). [CrossRef] [PubMed]
  6. A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B99(3), 391–395 (2010). [CrossRef]
  7. A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength Raman Fiber Lasers Using Hi-Bi Photonic Crystal Fiber Loop Mirrors Combined With Random Cavities,” J. Light. Techn.29(10), 1482–1488 (2011). [CrossRef]
  8. K. D. Park, B. Min, P. Kim, N. Park, J. H. Lee, and J. S. Chang, “Dynamics of cascaded Brillouin-Rayleigh scattering in a distributed fiber Raman amplifier,” Opt. Lett.27(3), 155–157 (2002). [CrossRef] [PubMed]
  9. B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber,” IEEE Photon. Technol. Lett.13(12), 1352–1354 (2001). [CrossRef]
  10. O. Frazão, C. Correia, J. M. Baptista, and J. L. Santos, “Raman fibre Bragg-grating laser sensor with cooperative Rayleigh scattering for strain-temperature measurement,” Meas. Sci. Technol.20(4), 045203 (2009). [CrossRef]
  11. H. F. Martins, M. B. Marques, and O. Frazão, “Temperature-insensitive strain sensor based on four-wave mixing using Raman fiber Bragg grating laser sensor with cooperative Rayleigh scattering,” Appl. Phys. B (to be published).
  12. S. Martin-Lopez, M. Alcon-Camas, F. Rodriguez, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. Gonzalez-Herraez, “Brillouin optical time-domain analysis assisted by second-order Raman amplification,” Opt. Express18(18), 18769–18778 (2010). [CrossRef] [PubMed]
  13. J. Hu, Z. Chen, X. Yang, J. Ng, and Ch. Yu, “100-km Long Distance Fiber Bragg Grating Sensor System Based on Erbium-Doped Fiber and Raman Amplification,” IEEE Photon. Technol. Lett.22(19), 1422–1424 (2010). [CrossRef]
  14. T. Saitoh, K. Nakamura, Y. Takahashi, H. Iida, Y. Iki, and K. Miyagi, “Ultra-long-distance (230 km) FBG sensor system,” Proc. SPIE7004, 70046C, 70046C-4 (2008). [CrossRef]
  15. Y. J. Rao, S. Feng, Q. Jiang, and Z.-L. Ran, “Ultra-long distance (300km) fiber Bragg grating sensor system using hybrid EDF and Raman amplification,” Proc. SPIE7503, 75031Q, 75031Q-4 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited