OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 19 — Sep. 12, 2011
  • pp: 18190–18198

Compact and multiplexible hydrogen gas sensor assisted by self-referencing technique

Kwan Seob Park, Young Ho Kim, Joo Beom Eom, Seong Jun Park, Min-Su Park, Jae-Hyeong Jang, and Byeong Ha Lee  »View Author Affiliations


Optics Express, Vol. 19, Issue 19, pp. 18190-18198 (2011)
http://dx.doi.org/10.1364/OE.19.018190


View Full Text Article

Enhanced HTML    Acrobat PDF (1028 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have experimentally implemented a multiplexible but compact fiber sensor system suitable for multipoint sensing of hydrogen gas leakage. By making dual cavities along an optical fiber and coating a palladium film only at the end of the fiber tip, the measurement errors induced by the optical source power fluctuation and the mechanical perturbation in the lead fiber could be compensated. By adjusting the length of the dual-cavity, the capability of multiplexing several hydrogen sensors could be achieved. The experiment results showed that the response speed of the sensor was increasing with temperature, but at a low temperature the response amplitude became large.

© 2011 OSA

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot

ToC Category:
Sensors

History
Original Manuscript: June 22, 2011
Revised Manuscript: August 6, 2011
Manuscript Accepted: August 22, 2011
Published: September 1, 2011

Citation
Kwan Seob Park, Young Ho Kim, Joo Beom Eom, Seong Jun Park, Min-Su Park, Jae-Hyeong Jang, and Byeong Ha Lee, "Compact and multiplexible hydrogen gas sensor assisted by self-referencing technique," Opt. Express 19, 18190-18198 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-19-18190


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Sutapun, M. Tabib-Azar, and A. Kazemi, “Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing,” Sens. Actuators B Chem.60(1), 27–34 (1999). [CrossRef]
  2. C. Caucheteur, M. Debliquy, D. Lahem, and P. Megret, “Hybrid fiber gratings coated with a catalytic sensitive layer for hydrogen sensing in air,” Opt. Express16(21), 16854–16859 (2008). [CrossRef] [PubMed]
  3. A. Trouillet, E. Marin, and C. Veillas, “Fiber gratings for hydrogen sensing,” Meas. Sci. Technol.17(5), 1124–1128 (2006). [CrossRef]
  4. Y. H. Kim, M. J. Kim, M. S. Park, J. H. Jang, B. H. Lee, and K.-T. Kim, “Hydrogen sensor based on a palladium-coated long-period fiber grating pair,” J. Opt. Soc. Kor.12(4), 221–225 (2008). [CrossRef]
  5. S. M. Adler-Golden, N. Goldstein, F. Bien, M. W. Matthew, M. E. Gersh, W. K. Cheng, and F. W. Adams, “Laser Raman sensor for measurement of trace-hydrogen gas,” Appl. Opt.31(6), 831–835 (1992). [CrossRef] [PubMed]
  6. A. Ortigosa-Blanch, A. Diez, A. Gonzalez-Segura, J. L. Cruz, and M. V. Andres, “Wavelength-codified fiber laser hydrogen detector,” Appl. Phys. Lett.87(20), 201104 (2005). [CrossRef]
  7. J. Villatoro and D. Monzón-Hernández, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express13(13), 5087–5092 (2005). [CrossRef] [PubMed]
  8. V. P. Minkovich, D. Monzón-Hernández, J. Villatoro, and G. Badenes, “Microstructured optical fiber coated with thin films for gas and chemical sensing,” Opt. Express14(18), 8413–8418 (2006). [CrossRef] [PubMed]
  9. B. Chadwick, J. Tann, M. Brungs, and M. Gal, “A hydrogen sensor based on the optical generation of surface plasmons in a palladium alloy,” Sens. Actuators B Chem.17(3), 215–220 (1994). [CrossRef]
  10. K. Lin, Y. Lu, J. Chen, R. Zheng, P. Wang, and H. Ming, “Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity,” Opt. Express16(23), 18599–18604 (2008). [CrossRef] [PubMed]
  11. D. Iannuzzi, M. Slaman, J. Rector, H. Schreuders, S. Deladi, and M. Elwenspoek, “A fiber-top cantilever for hydrogen detection,” Sens. Actuators B Chem.121(2), 706–708 (2007). [CrossRef]
  12. C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films516(16), 5360–5363 (2008). [CrossRef]
  13. M. A. Butler, “Micromirror optical-fiber hydrogen sensor,” Sens. Actuators B Chem.22(2), 155–163 (1994). [CrossRef]
  14. X. Bévenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Hydrogen leak detection using optical fibre sensor for aerospace applications,” Sens. Actuators B Chem.67(1-2), 57–67 (2000). [CrossRef]
  15. S. Abad, M. López-Amo, F. M. Araújo, L. A. Ferreira, and J. L. Santos, “Fiber Bragg grating-based self-referencing technique for wavelength-multiplexed intensity sensors,” Opt. Lett.27(4), 222–224 (2002). [CrossRef] [PubMed]
  16. C. Vazquez, J. Montalvo, D. S. Montero, and J. M. S. Pena, “Self-referencing fiber-optic intensity sensor using ring resonators and fiber Bragg gratings,” IEEE Photon. Technol. Lett.18(22), 2374–2376 (2006). [CrossRef]
  17. A. Wang, M. S. Miller, A. J. Plante, M. F. Gunther, K. A. Murphy, and R. O. Claus, “Split-spectrum intensity-based optical fiber sensors for measurement of microdisplacement, strain, and pressure,” Appl. Opt.35(15), 2595–2601 (1996). [CrossRef] [PubMed]
  18. Z. Yang, M. Zhang, Y. Liao, Q. Tian, Q. Li, Y. Zhang, and Z. Zhuang, “Extrinsic Fabry-Perot interferometric optical fiber hydrogen detection system,” Appl. Opt.49(15), 2736–2740 (2010). [CrossRef] [PubMed]
  19. W. B. Spillman and J. R. Lord, “Self-referencing multiplexing technique for fiber-optic intensity sensors,” J. Lightwave Technol.5(7), 865–869 (1987). [CrossRef]
  20. S. Abad, M. López-Amo, F. M. Araújo, L. A. Ferreira, and J. L. Santos, “Fiber Bragg grating-based self-referencing technique for wavelength-multiplexed intensity sensors,” Opt. Lett.27(4), 222–224 (2002). [CrossRef] [PubMed]
  21. H. Y. Choi, G. Mudhana, K. S. Park, U. C. Paek, and B. H. Lee, “Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index,” Opt. Express18(1), 141–149 (2010). [CrossRef] [PubMed]
  22. J. Hu, M. Jiang, and Z. Lin, “Novel technology for depositing a Pd-Ag alloy film on a tapered optical fiber for hydrogen sensing,” J. Opt. A, Pure Appl. Opt.7(10), 593–598 (2005). [CrossRef]
  23. X. Ke and G. J. Kramer, “Absorption and diffusion of hydrogen in palladium-silver alloys by density functional theory,” Phys. Rev. B66(18), 184304 (2002). [CrossRef]
  24. F. Shen and A. Wang, “Frequency-estimation-based signal-processing algorithm for white-light optical fiber Fabry-Perot interferometers,” Appl. Opt.44(25), 5206–5214 (2005). [CrossRef] [PubMed]
  25. G. Mudhana, K. S. Park, S. Y. Ryu, and B. H. Lee, “Fiber-optic probe based on a bi-functional lensed photonic crystal fiber for refractive index measurements of liquids,” IEEE Sens. J.11(5), 1178–1183 (2011). [CrossRef]
  26. Y. J. Rao, J. Jiang, and C. X. Zhou, “Spatial-frequency multiplexed fiber-optic Fizeau strain sensor system with optical amplification,” Sens. Actuators A Phys.120(2), 354–359 (2005). [CrossRef]
  27. F. A. Lewis, The Palladium Hydrogen System (Academic, New York, 1967).
  28. Y. H. Kim, M. J. Kim, B. S. Rho, M. S. Park, J. H. Jang, and B. H. Lee, “Ultra sensitive fiber-optic hydrogen sensor based on high order cladding mode,” IEEE Sens. J.11(6), 1423–1426 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited