OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 19 — Sep. 12, 2011
  • pp: 18237–18245

Plasmonic crystal defect nanolaser

Amit M. Lakhani, Myung-ki Kim, Erwin K. Lau, and Ming C. Wu  »View Author Affiliations


Optics Express, Vol. 19, Issue 19, pp. 18237-18245 (2011)
http://dx.doi.org/10.1364/OE.19.018237


View Full Text Article

Enhanced HTML    Acrobat PDF (1322 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Surface plasmons are widely interesting due to their ability to probe nanoscale dimensions. To create coherent plasmons, we demonstrate a nanolaser based on a plasmonic bandgap defect state inside a surface plasmonic crystal. A one-dimensional semiconductor-based plasmonic crystal is engineered to have stopbands in which surface plasmons are prohibited from travelling in the crystalline structure. We then confine surface plasmons using a three-hole defect in the periodic structure. Using conventional III-V semiconductors, we achieve lasing in mode volumes as small as Veff = 0.3(λ0 /n)3 at λ0 = 1342 nm, which is 10 times smaller than similar modes in photonic crystals of the same size. This demonstration should pave the way for achieving engineered nanolasers with deep-subwavelength mode volumes and attractive nanophotonics integration capabilities while enabling the use of plasmonic crystals as an attractive platform for designing plasmons.

© 2011 OSA

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(240.6680) Optics at surfaces : Surface plasmons
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: July 19, 2011
Revised Manuscript: August 13, 2011
Manuscript Accepted: August 13, 2011
Published: September 1, 2011

Citation
Amit M. Lakhani, Myung-ki Kim, Erwin K. Lau, and Ming C. Wu, "Plasmonic crystal defect nanolaser," Opt. Express 19, 18237-18245 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-19-18237


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005). [CrossRef] [PubMed]
  2. W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics3(4), 220–224 (2009). [CrossRef]
  3. P. Alivisatos, “The use of nanocrystals in biological detection,” Nat. Biotechnol.22(1), 47–52 (2004). [CrossRef] [PubMed]
  4. H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science316(5823), 430–432 (2007). [CrossRef] [PubMed]
  5. A. Artar, A. A. Yanik, and H. Altug, “Fabry–Pérot nanocavities in multilayered plasmonic crystals for enhanced biosensing,” Appl. Phys. Lett.95(5), 051105 (2009). [CrossRef]
  6. D. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE97(7), 1166–1185 (2009). [CrossRef]
  7. J. A. Dionne, L. A. Sweatlock, M. T. Sheldon, A. P. Alivisatos, and H. A. Atwater, “Silicon-based plasmonics for on-chip photonics,” IEEE J. Sel. Top. Quantum Electron.16(1), 295–306 (2010). [CrossRef]
  8. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008). [CrossRef]
  9. H. T. Miyazaki and Y. Kurokawa, “Controlled plasmon resonance in closed metal/insulator/metal nanocavities,” Appl. Phys. Lett.89(21), 211126 (2006). [CrossRef]
  10. V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, and X. Zhang, “Plasmonic Fabry-Pérot nanocavity,” Nano Lett.9(10), 3489–3493 (2009). [CrossRef] [PubMed]
  11. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006). [CrossRef] [PubMed]
  12. D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett.89(4), 041111 (2006). [CrossRef]
  13. S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A plasmonic dimple lens for nanoscale focusing of light,” Nano Lett.9(10), 3447–3452 (2009). [CrossRef] [PubMed]
  14. M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007). [CrossRef]
  15. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express17(13), 11107–11112 (2009). [CrossRef] [PubMed]
  16. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009). [CrossRef] [PubMed]
  17. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009). [CrossRef] [PubMed]
  18. K. Yu, A. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express18(9), 8790–8799 (2010). [CrossRef] [PubMed]
  19. M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics4(6), 395–399 (2010). [CrossRef]
  20. C.-Y. Lu, S.-W. Chang, S. L. Chuang, T. D. Germann, and D. Bimberg, “Metal-cavity surface-emitting microlaser at room temperature,” Appl. Phys. Lett.96(25), 251101 (2010). [CrossRef]
  21. S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Lieber, and H.-G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett.10(9), 3679–3683 (2010). [CrossRef] [PubMed]
  22. A. M. Lakhani, K. Yu, and M. C. Wu, “Lasing in subwavelength semiconductor nanopatches,” Semicond. Sci. Technol.26(1), 014013 (2011). [CrossRef]
  23. R.-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater.10(2), 110–113 (2011). [CrossRef] [PubMed]
  24. K. Ding, Z. Liu, L. Yin, H. Wang, R. Liu, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Nötzel, and C. Z. Ning, “Electrical injection, continuous wave operation of subwavelength-metallic-cavity lasers at 260 K,” Appl. Phys. Lett.98(23), 231108 (2011). [CrossRef]
  25. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett.60(3), 289 (1992). [CrossRef]
  26. J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater.1(2), 106–110 (2002). [CrossRef] [PubMed]
  27. Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, “Visible submicron microdisk lasers,” Appl. Phys. Lett.90(11), 111119 (2007). [CrossRef]
  28. S. Reitzenstein, T. Heindel, C. Kistner, A. Rahimi-Iman, C. Schneider, S. Hofling, and A. Forchel, “Low threshold electrically pumped quantum dot-micropillar lasers,” Appl. Phys. Lett.93(6), 061104 (2008). [CrossRef]
  29. M.-K. Kim, S. H. Lee, M. Choi, B.-H. Ahn, N. Park, Y.-H. Lee, and B. Min, “Low-loss surface-plasmonic nanobeam cavities,” Opt. Express18(11), 11089–11096 (2010). [CrossRef] [PubMed]
  30. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science284(5421), 1819–1821 (1999). [CrossRef] [PubMed]
  31. H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science305(5689), 1444–1447 (2004). [CrossRef] [PubMed]
  32. H. Matsubara, S. Yoshimoto, H. Saito, Y. Jianglin, Y. Tanaka, and S. Noda, “GaN photonic-crystal surface-emitting laser at blue-violet wavelengths,” Science319(5862), 445–447 (2008). [CrossRef] [PubMed]
  33. Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics4(7), 447–450 (2010). [CrossRef]
  34. Y. Gong, B. Ellis, G. Shambat, T. Sarmiento, J. S. Harris, and J. Vuckovic, “Nanobeam photonic crystal cavity quantum dot laser,” Opt. Express18(9), 8781–8789 (2010). [CrossRef] [PubMed]
  35. T. Okamoto, F. H’Dhili, and S. Kawata, “Towards plasmonic band gap laser,” Appl. Phys. Lett.85(18), 3968 (2004). [CrossRef]
  36. E. K. Lau, A. Lakhani, R. S. Tucker, and M. C. Wu, “Enhanced modulation bandwidth of nanocavity light emitting devices,” Opt. Express17(10), 7790–7799 (2009). [CrossRef] [PubMed]
  37. C. Jeppesen, N. A. Mortensen, and A. Kristensen, “The effect of Ti and ITO adhesion layers on gold split-ring resonators,” Appl. Phys. Lett.97(26), 263103 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited