OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 19 — Sep. 12, 2011
  • pp: 18253–18259

Experimental retrieval of the kinetic parameters of a dye in a solid film

Jan Trieschmann, Shumin Xiao, Ludmila J. Prokopeva, Vladimir P. Drachev, and Alexander V. Kildishev  »View Author Affiliations


Optics Express, Vol. 19, Issue 19, pp. 18253-18259 (2011)
http://dx.doi.org/10.1364/OE.19.018253


View Full Text Article

Enhanced HTML    Acrobat PDF (756 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Effects of a solid matrix on the dye kinetic parameters for Rh800 were experimentally studied. Saturation intensity dependencies were measured with a seeding pulse amplification method using a picosecond and a femtosecond white light supercontinuum source. The kinetic parameters were obtained by fitting experimental dependencies with Yee’s finite-difference time-domain model coupled to the rate equations of the 4-level Rh800-system. The comparison of these parameters (Rh800-solid host) with liquid host parameters revealed a slight change of the radiative lifetime and a strong change of the non-radiative decay rate. This experimentally determined model enables predictive simulations of time-domain responses of active metamaterials.

© 2011 OSA

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(160.3918) Materials : Metamaterials
(160.4236) Materials : Nanomaterials

ToC Category:
Materials

History
Original Manuscript: May 4, 2011
Manuscript Accepted: July 19, 2011
Published: September 2, 2011

Citation
Jan Trieschmann, Shumin Xiao, Ludmila J. Prokopeva, Vladimir P. Drachev, and Alexander V. Kildishev, "Experimental retrieval of the kinetic parameters of a dye in a solid film," Opt. Express 19, 18253-18259 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-19-18253


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010). [CrossRef] [PubMed]
  2. M. P. Hatlo Andresen, A. V. Skaldebo, M. W. Haakestad, H. E. Krogstad, and J. Skaar, “Effect of gain saturation in a gain compensated perfect lens,” J. Opt. Soc. Am. B 27, 1610–1616 (2010). [CrossRef]
  3. Z.-G. Dong, H. Liu, T. Li, Z.-H. Zhu, S.-M. Wang, J.-X. Cao, S.-N. Zhu, and X. Zhang, “Optical loss compensation in a bulk left-handed metamaterial by the gain in quantum dots,” Phys. Rev. B 96, 044104 (2010).
  4. T. A. Klar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Negative-index metamaterials: going optical,” IEEE J. Sel. Top. Quantum Electron. 12, 1106–1115 (2006). [CrossRef]
  5. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302 (1966). [CrossRef]
  6. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method , 3rd ed. (Artech House, 2005).
  7. S. V. Zhukovsky and D. N. Chigrin, “Numerical modelling of lasing in microstructures,” Phys. Stat. Solidi B 244, 3515 (2007). [CrossRef]
  8. A. S. Nagra and R. A. York, “FDTD Analysis of Wave Propagation in Nonlinear Absorbing and Gain Media,” IEEE Trans. Antennas Propag. 46, 334 (1998). [CrossRef]
  9. A. Fang, T. Koschny, M. Wegener, and C. M. Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B 79, 241104 (2009). [CrossRef]
  10. S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming Losses with Gain in a Negative Refractive Index Metamaterial,” Phys. Rev. Lett. 105, 127401 (2010). [CrossRef] [PubMed]
  11. M. Lieberherr, p.39–46 (1988), “Laser induced fluorescence and scattering near interfaces,” Ph.D. thesis, ETH Zurich (1991).
  12. P. Sperber, W. Spangler, B. Meier, and A. Penzkoffer, “Experimental and theoretical investigation of tunable picosecond pulse generation in longitudinally pumped dye laser generators and amplifiers,” Opt. Quantum. Electron. 20, 395 (1988). [CrossRef]
  13. B. Bachteler, K.-H. Drexhage, J. Arden-Jacob, K.-T. Han, M. Koellner, R. Mueller, M. Sauer, S. Seeger, and J. Wolfrum, “Sensitive fluorescence detection in capillary electrophoresis using laser diodes and multiplex dyes,” J. Lumin. 62, 101 (1994). [CrossRef]
  14. D. P. Benfey, D. C. Brown, S. J. Davis, L. G. Piper, and R. F. Foutter, “Diode-pumped dye laser analysis and design,” Appl. Opt. 31, 7034–7041 (1992). [CrossRef] [PubMed]
  15. A. E. Siegman, Lasers (University Science Books, 1986).
  16. L. Zhili and L. Thylen, “On the accuracy and stability of several widely used FDTD approaches for modeling lorentz dielectrics,” IEEE Trans. Antennas Propag. 57, 3378 (2009). [CrossRef]
  17. E. Hecht, Optics , 4th ed. (Addison Wesley, 2001).
  18. L. J. Prokopeva, J. Borneman, and A. V. Kildishev, “Optical dispersion models for time-domain modeling of metal-dielectric nanostructures,” IEEE Trans. Magn. 47, 1150–1153 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited