OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 19 — Sep. 12, 2011
  • pp: 18272–18282

Modal loss mechanism of micro-structured VCSELs studied using full vector FDTD method

Du-Ho Jo, Ngoc Hai Vu, Jin-Tae Kim, and In-Kag Hwang  »View Author Affiliations

Optics Express, Vol. 19, Issue 19, pp. 18272-18282 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1488 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Modal properties of vertical cavity surface-emitting lasers (VCSELs) with holey structures are studied using a finite difference time domain (FDTD) method. We investigate loss behavior with respect to the variation of structural parameters, and explain the loss mechanism of VCSELs. We also propose an effective method to estimate the modal loss based on mode profiles obtained using FDTD simulation. Our results could provide an important guideline for optimization of the microstructures of high-power single-mode VCSELs.

© 2011 OSA

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(140.3945) Lasers and laser optics : Microcavities
(140.7260) Lasers and laser optics : Vertical cavity surface emitting lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 5, 2011
Revised Manuscript: August 18, 2011
Manuscript Accepted: August 21, 2011
Published: September 2, 2011

Du-Ho Jo, Ngoc Hai Vu, Jin-Tae Kim, and In-Kag Hwang, "Modal loss mechanism of micro-structured VCSELs studied using full vector FDTD method," Opt. Express 19, 18272-18282 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. P. Hegarty, G. Huyet, J. G. McInerney, K. D. Choquette, K. M. Geib, and H. Q. Hou, “Size dependence of transverse mode structure in oxide-confined vertical-cavity laser diodes,” Appl. Phys. Lett. 73(5), 596–598 (1998). [CrossRef]
  2. J. Hashizume and F. Koyama, “Plasmon-enhancement of optical near-field of metal nanoaperture surface-emitting laser,” Appl. Phys. Lett. 84(17), 3226–3228 (2004). [CrossRef]
  3. D. Zhou and L. J. Mawst, “High-power single-mode antiresonant reflecting optical waveguide-type vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 38(12), 1599–1606 (2002). [CrossRef]
  4. D. S. Song, Y. J. Lee, H. W. Choi, and Y. H. Lee, “Polarization-controlled, single-transverse-mode, photonic-crystal, vertical-cavity, surface-emitting lasers,” Appl. Phys. Lett. 82(19), 3182–3184 (2003). [CrossRef]
  5. C. J. Chang-Hasnain, Y. Zhou, M. C. Y. Huang, and C. Chase, “High-contrast grating VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15(3), 869–878 (2009). [CrossRef]
  6. G. R. Hadley, “Effective index model for vertical-cavity surface-emitting lasers,” Opt. Lett. 20(13), 1483–1485 (1995). [CrossRef] [PubMed]
  7. W. C. Ng, Y. Liu, B. Klein, and K. Hess, “Improved Effective Index Method for Oxide-Conned VCSEL Mode Analysis,” Proc. SPIE 4646, 168–175 (2002). [CrossRef]
  8. N. N. Elkin, A. P. Napartovich, V. N. Troshchieva, D. V. Vysotsky, T.-W. Lee, S. C. Hagness, N.-H. Kim, L. Bao, and L. J. Mawst, “Antiresonant reflecting optical waveguide-type vertical-cavity surface emitting lasers: comparison of full-vector finite-difference time-domain and 3-D bidirectional beam propagation methods,” J. Lightwave Technol. 24(4), 1834–1842 (2006). [CrossRef]
  9. M. Dems, T. Czyszanowski, and K. Panajotov, “Numerical analysis of high Q-factor photonic-crystal VCSELs with plane-wave admittance method,” Opt. Quantum Electron. 39(4-6), 419–426 (2007). [CrossRef]
  10. G. Liu, J.-F. Seurin, S. L. Chuang, D. I. Babic, S. W. Corzine, M. Tan, D. C. Barnes, and T. N. Tiouririne, “Mode selectivity study of vertical-cavity surface emitting lasers,” Appl. Phys. Lett. 73(6), 726–728 (1998). [CrossRef]
  11. K. Morito, D. Mori, E. Mizuta, and T. Baba, “Full 3D FDTD analysis of modal characteristics in VCSELs with holey structure,” Proc. SPIE 5722, 191–200 (2005). [CrossRef]
  12. A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite- Difference Time-Domain Method (Artech House 2005).
  13. N. H. Vu, B.-C. Jeon, D.-H. Jo, and I.-K. Hwang, “Management of computational errors in a finite-difference time-domain method for photonic crystal fibers,” J. Kor. Phys. Soc. 55(4), 1335–1343 (2009). [CrossRef]
  14. J. H. Baek, D. S. Song, I. K. Hwang, H. H. Lee, Y. H. Lee, Y. G. Ju, T. Kondo, T. Miyamoto, and F. Koyama, “Transverse mode control by etch-depth tuning in 1120-nm GaInAs/GaAs photonic crystal vertical-cavity surface-emitting lasers,” Opt. Express 12(5), 859–867 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited