OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 19 — Sep. 12, 2011
  • pp: 18294–18301

Femtosecond laser writing of waveguide retarders in fused silica for polarization control in optical circuits

Luís A. Fernandes, Jason R. Grenier, Peter R. Herman, J. Stewart Aitchison, and Paulo V. S. Marques  »View Author Affiliations


Optics Express, Vol. 19, Issue 19, pp. 18294-18301 (2011)
http://dx.doi.org/10.1364/OE.19.018294


View Full Text Article

Enhanced HTML    Acrobat PDF (1327 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Femtosecond laser (300 fs, 500 kHz, 522 nm) fabrication of optical waveguides in bulk silica glass is extended to waveguide retarders. We study the merits of nanograting orientation (perpendicular or parallel to the waveguide) for generating high and low birefringence waveguides. This is used together with other exposure condition to control the waveguide birefringence between 10−5 and 10−4 permitting for the simultaneous fabrication of the waveguides and the tuning of the retardance demonstrating quarter and half-wave retarders in the 1200 nm to 1700 nm spectrum. The wavelength dependence of the birefringence is also characterized over a range of exposure conditions.

© 2011 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.3390) Lasers and laser optics : Laser materials processing
(130.5440) Integrated optics : Polarization-selective devices

ToC Category:
Integrated Optics

History
Original Manuscript: July 14, 2011
Revised Manuscript: August 14, 2011
Manuscript Accepted: August 15, 2011
Published: September 2, 2011

Citation
Luís A. Fernandes, Jason R. Grenier, Peter R. Herman, J. Stewart Aitchison, and Paulo V. S. Marques, "Femtosecond laser writing of waveguide retarders in fused silica for polarization control in optical circuits," Opt. Express 19, 18294-18301 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-19-18294


Sort:  Journal  |  Reset  

References

  1. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A: Mater. Sci. Process.77, 109–111 (2003). [CrossRef]
  2. A. M. Kowalevicz, V. Sharma, E. P. Ippen, J. G. Fujimoto, and K. Minoshima, “Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator,” Opt. Lett.30, 1060–1062 (2005). [CrossRef] [PubMed]
  3. S. Eaton, W. Chen, H. Zhang, R. Iyer, J. Li, M. Ng, S. Ho, J. S. Aitchison, and P. R. Herman, “Spectral loss characterization of femtosecond laser written waveguides in glass with application to demultiplexing of 1300 and 1550 nm wavelengths,” J. Lightwave Technol.27, 1079–1085 (2009). [CrossRef]
  4. Y. Bellouard, T. Colomb, C. Depeursinge, M. Dugan, A. Said, and P. Bado, “Nanoindentation and birefringence measurements on fused silica specimen exposed to low-energy femtosecond pulses,” Opt. Express14, 8360–8366 (2006). [CrossRef] [PubMed]
  5. V. R. Bhardwaj, P. B. Corkum, D. M. Rayner, C. Hnatovsky, E. Simova, and R. S. Taylor, “Stress in femtosecond-laser-written waveguides in fused silica,” Opt. Lett.29, 1312–1314 (2004). [CrossRef] [PubMed]
  6. M. Ams, G. Marshall, and M. Withford, “Study of the influence of femtosecond laser polarisation on direct writing of waveguides,” Opt. Express14,, 13158–13163 (2006). [CrossRef] [PubMed]
  7. S. Eaton, H. Zhang, M. Ng, J. Li, W. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express16, 9443–9458 (2008). [CrossRef] [PubMed]
  8. P. Yang, G. R. Burns, J. Guo, T. S. Luk, and G. A. Vawter, “Femtosecond laser-pulse-induced birefringence in optically isotropic glass,” J. Appl. Phys95, 5280–5283 (2004). [CrossRef]
  9. E. Bricchi, B. Klappauf, and P. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett.29, 119–121 (2004). [CrossRef] [PubMed]
  10. R. Taylor, C. Hnatovsky, E. Simova, P. Rajeev, D. Rayner, and P. Corkum, “Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass,” Opt. Lett.32, 2888–2890 (2007). [CrossRef] [PubMed]
  11. Y. Shimotsuma, M. Sakakura, P. Kazansky, M. Beresna, J Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater.22, 4039–4043 (2010). [CrossRef] [PubMed]
  12. G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express17, 9515–9525 (2009). [CrossRef] [PubMed]
  13. W. Cai, A. R. Libertun, and R. Piestun, “Polarization selective computer-generated holograms realized in glass by femtosecond laser induced nanogratings,” Opt. Express14, 3785–3791 (2006). [CrossRef] [PubMed]
  14. D. Papazoglou and M. Loulakis, “Embedded birefringent computer-generated holograms fabricated by femtosecond laser pulses,” Opt. Lett.31, 1441–1443 (2006). [CrossRef] [PubMed]
  15. M. Beresna and P. G. Kazansky, “Polarization diffraction grating produced by femtosecond laser nanostructuring in glass,” Opt. Lett.35, 1662–1664 (2010). [CrossRef] [PubMed]
  16. L. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. Korovin, U. Peschel, S. Nolte, and A. Tunnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A: Mater. Sci. Process.100, 1–6 (2010). [CrossRef]
  17. M. Lobino and J. L. O’Brien, “Entangled photons on a chip,” Nature469, 43–44 (2011). [CrossRef] [PubMed]
  18. G. Marshall, A. Politi, J. Matthews, P. Dekker, M. Ams, M. Withford, and J. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express17, 12546–12554 (2009). [CrossRef] [PubMed]
  19. L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett.105, 200503 (2010). [CrossRef]
  20. A. Politi, M.J. Cryan, J.G. Rarity, S. Yu, and J.L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science320, 5876, 646–649 (2008). [CrossRef]
  21. L. A. Fernandes, J. R. Grenier, P. R. Herman, J. S. Aitchison, and P. V. S. Marques, “Femtosecond laser fabrication of birefringent directional couplers as polarization beam splitters in fused silica,” Opt. Express19, 11992–11999 (2011). [CrossRef] [PubMed]
  22. S. Betti, G. De Marchis, and E. Iannone, “Polarization modulated direct detection optical transmission systems,” J. Lightwave Technol.10, 1985–1997 (1992). [CrossRef]
  23. C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 1984 (IEEE, New York,1984), 175–179. [PubMed]
  24. J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics3, 687, 687–695 (2009). [CrossRef]
  25. J. L. O’Brien, “Optical quantum computing,” Science318, 1567–1570 (2007). [CrossRef] [PubMed]
  26. L. Shah, A. Arai, S. Eaton, and P. R. Herman, “Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate,” Opt. Express13, 1999–2006 (2005). [CrossRef] [PubMed]
  27. H. Zhang, S. Eaton, and P. R. Herman, “Single-step writing of Bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser,” Opt. Lett.32, 2559–2561 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited