OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 19 — Sep. 12, 2011
  • pp: 18324–18338

Sensitivity of X-ray grating interferometry

P. Modregger, B. R. Pinzer, T. Thüring, S. Rutishauser, C. David, and M. Stampanoni  »View Author Affiliations

Optics Express, Vol. 19, Issue 19, pp. 18324-18338 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1467 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



It is known that the sensitivity of X-ray phase-contrast grating interferometry with regard to electron density variations present in the sample is related to the minimum detectable refraction angle. In this article a numerical framework is developed that allows for a realistic and quantitative determination of the sensitivity. The framework is validated by comparisons with experimental results and then used for the quantification of several influences on the sensitivity, such as spatial coherence or the number of phase step images. In particular, we identify the ideal inter-grating distance with respect to the highest sensitivity for parallel beam geometry. This knowledge will help to optimize existing synchrotron-based grating interferometry setups.

© 2011 OSA

OCIS Codes
(110.2990) Imaging systems : Image formation theory
(340.7440) X-ray optics : X-ray imaging
(110.3010) Imaging systems : Image reconstruction techniques

ToC Category:
X-ray Optics

Original Manuscript: April 13, 2011
Revised Manuscript: June 7, 2011
Manuscript Accepted: August 22, 2011
Published: September 6, 2011

P. Modregger, B. R. Pinzer, T. Thüring, S. Rutishauser, C. David, and M. Stampanoni, "Sensitivity of X-ray grating interferometry," Opt. Express 19, 18324-18338 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U Bonse and M Hart, “An X-ray interferometer,” Appl. Phys. Lett. 6, 155–156 (1965). [CrossRef]
  2. A Momose, T Takeda, Y Itai, and K Hirano, “Phase-contrast x-ray computed tomography for observing biological soft tissues,” Nat. Med. 2, 473–475 (1996). [CrossRef] [PubMed]
  3. A Yoneyama, T Takeda, Y Tsuchiya, J Wu, Thet-Thet-Lwin, A Koizumi, K Hyodo, and Y Itai, “A phase-contrast X-ray imaging system-with a 60 x 30 mm field of view based on a skew-symmetric two-crystal X-ray interferometer,” Nucl. Instrum. Methods Phys. Res. A 523, 217–222 (2004). [CrossRef]
  4. A Snigirev, I Snigireva, V Kohn, S Kuznetsov, and I Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995). [CrossRef]
  5. P Cloetens, R Barrett, J Baruchel, J-P Guigay, and M Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D: Appl. Phys. 29, 133–146 (1996). [CrossRef]
  6. M Langer, P Cloetens, J-P Guigay, and F Peyrin, “Quantitative comparison of direct phase retrieval algorithms in in-line phase tomography,” Med. Phys.,  354556–4566 (2008). [CrossRef] [PubMed]
  7. TJ Davis, D Gao, T E Gureyev, A W Stevenson, and S W Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard X-rays,” Nature 373, 595–598 (1995). [CrossRef]
  8. D Chapman, W Thomlinson, R E Johnston, D Washburn, E D Pisano, N Gmür, Z Zhong, R H Menk, F Arfelli, and D Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42, 2015–2025 (1997). [CrossRef] [PubMed]
  9. P C Diemoz, P Coan, C Glaser, and A Bravin, “Absorption, refraction and scattering in analyzer-based imaging: comparison of different algorithms,” Opt. Express 18, 3494–3509 (2010). [CrossRef] [PubMed]
  10. M Stampanoni, G Borchert, R Abela, and P Rüegsegger, “Bragg magnifier: A detector for submicrometer x-ray computer tomography,” J. Appl. Phys. 92, 7630–7635 (2002). [CrossRef]
  11. P Modregger, D Lübbert, P Schäfer, and R Köhler, “Two dimensional diffraction enhanced imaging algorithm,” Appl. Phys. Lett. 90, 193501 (2007).
  12. C David, B Nöhammer, H H Solak, and E Ziegler, “Differential x-ray phase contrast imaging using a shearing interferometer,” Appl. Phys. Lett. 813287–3289 (2002). [CrossRef]
  13. A Momose, S Kawamoto, I Koyama, Y Hamaishi, K Takai, and Y Suzuki, “Demonstration of X-Ray Talbot Interferometry,” Jpn. J. Appl. Phys. 42, L866–L868 (2003). [CrossRef]
  14. T Weitkamp, A Diaz, C David, F Pfeiffer, M Stampanoni, P Cloetens, and E Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13, 6296–6304 (2005). [CrossRef] [PubMed]
  15. F Pfeiffer, O Bunk, C David, M Bech, G Le Duc, A Bravin, and P Cloetens, “High-resolution brain tumor visualization using three-dimensional x-ray phase contrast tomography,” Phys. Med. Biol. 52, 6923–6930 (2007). [CrossRef] [PubMed]
  16. Z Qi, J Zambelli, N Bevins, and G-H. Chen, “Quantitative imaging of electron density and effective atomic number using phase contrast CT,” Phys. Med. Biol. 55, 2669–2677 (2010). [CrossRef] [PubMed]
  17. F Pfeiffer, O Bunk, C Schulze-Briese, A Diaz, T Weitkamp, C David, JF van der Veen, I. Vartanyants, and IK Robinson, “Shearing interferometer for quantifying the coherence of hard X-ray beams,” Phys. Rev. Lett. 94, 164801 (2005). [CrossRef] [PubMed]
  18. Z-T Wang, K-J Kang, Z-F Huang, and Z-Q Chen, “Quantitative grating-based x-ray dark-field computed tomography,” Appl. Phys. Lett. 95, 094105 (2009). [CrossRef]
  19. M Engelhardt, J Baumann, M Schuster, C Kottler, F Pfeiffer, O Bunk, and C David, “High-resolution differential phase contrast imaging using a magnifying projection geometry with a microfocus x-ray source,” Appl. Phys. Lett. 90, 224101 (2007). [CrossRef]
  20. M Engelhardt, C Kottler, O Bunk, C David, C G Schroer, J Baumann, M Schuster, and F Pfeiffer, “The fractional Talbot effect in differential x-ray phase-contrast imaging for extended and polychromatic x-ray sources,” J. Microsc. 232, 145–157 (2008). [CrossRef] [PubMed]
  21. F Pfeiffer, T Weitkamp, O Bunk, and C David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys. 2, 258–261 (2006). [CrossRef]
  22. T Donath, M Chabior, F Pfeiffer, O Bunk, E Reznikova, J Mohr, E Hempel, S Popescu, M Hoheisel, M Schuster, J Baumann, and C David, “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106, 054703 (2009). [CrossRef]
  23. C David, J Bruder, T Rohbeck, C Grünzweig, C Kottler, A Diaz, O Bunk, and F Pfeiffer, “Fabrication of diffraction gratings for hard X-ray phase contrast imaging,” Microelectron. Eng. 84, 1172–1177 (2007). [CrossRef]
  24. E Reznikova, J Mohr, M Boerner, V Nazmov, and P-J Jakobs, “Soft X-ray lithography of high aspect ratio SU8 submicron structures. Microsystem Technologies,” Microsyst. Technol. 14, 1683–1688 (2008). [CrossRef]
  25. D Noda, M Tanaka, K Shimada, W Yashiro, A Momose, and T Hattori, “Fabrication of large area diffraction grating using LIGA process,” Microsyst. Technol. 14, 1311–11315 (2008). [CrossRef]
  26. H F Talbot, “Facts relating to optical science. No. IV,” Philos. Mag. 9, 401–407 (1836).
  27. P Cloetens, Contribution to phase contrast imaging, reconstruction and tomography with hard synchrotron radiation: principles, implementation and applications. PhD thesis, Vrije Universiteit Brussel, 1999.
  28. T J Suleski, “Generation of Lohmann images from binary-phase Talbot array illuminators,” Appl. Opt. 36, 4686–4691 (1997). [CrossRef] [PubMed]
  29. M Stampanoni, A Groso, A Isenegger, G Mikuljan, Q Chen, D Meister, M Lange, R Betemps, S Henein, and R Abela, “TOMCAT: A beamline for TOmographic Microscopy and Coherent rAdiology experimenTs,” Synch. Rad. Instrum. 879, 848–851 (2007).
  30. S A McDonald, F Marone, C Hintermüller, G Mikuljan, C David, F Pfeiffer, and M Stampanoni, “Advanced phase-contrast imaging using a grating interferometer,” J. Synch. Rad. 16, 562–572 (2009). [CrossRef]
  31. F. James, Statistical methods in experimental physics, 2nd ed. (World Scientific Publishing, Singapore, 2006).
  32. V Revol, C Kottler, R Kaufmann, U Straumann, and C Urban, “Noise analysis of grating-based x-ray differential phase contrast imaging,” Rev. Sci. Instrum. 81, 073709 (2010) [CrossRef] [PubMed]
  33. A Rack, T Weitkamp, M Riotte, D Grigoriev, T Rack, L Helfen, T Baumbach, R Dietsch, T Holz, M Krämer, F Siewert, M Meduna, P Cloetens, and E Ziegler, “Comparative study of multilayers used in monochromators for synchrotron-based coherent hard X-ray imaging,” J. Synch. Rad. 17, 496–510 (2010). [CrossRef]
  34. T Weitkamp, C David, C Kottler, O Bunk, and F Pfeiffer, “Tomography with grating interferometers at low-brilliance sources,” Proc. SPIE 6318 (2006). [CrossRef]
  35. R Raupach and T G Flohr, “Analytical evaluation of the signal and noise propagation in x-ray differential phase-contrast computed tomography,” Phys. Med. Biol. 56, 2219–2244 (2011). [CrossRef] [PubMed]
  36. M Bech, X-ray imaging with a grating interferometer, PhD thesis, University of Copenhagen (2009).
  37. T Weitkamp, I Zanette, C David, J Baruchel, M Bech, P Bernard, H Deyhle, T Donath, J Kenntner, S Lang, J Mohr, B Müller, F Pfeiffer, E Reznikova, S Rutishauser, G Schulz, A Tapfer, and J-P Valade, “Recent developments in x-ray Talbot interferometry at ESRF-ID19,” Proc. SPIE 7804 (2010). [CrossRef]
  38. W Yashiro, Y Takeda, and A Momose, “Efficiency of capturing a phase image using cone-beam x-ray Talbot interferometry,” J. Opt. Soc. Am. A 25, 2025–2039 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited