OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 19 — Sep. 12, 2011
  • pp: 18345–18363

Complex bound and leaky modes in chains of plasmonic nanospheres

Salvatore Campione, Sergiy Steshenko, and Filippo Capolino  »View Author Affiliations

Optics Express, Vol. 19, Issue 19, pp. 18345-18363 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1284 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Bound and leaky modes with complex wavenumber in chains (linear arrays) of plasmonic nanospheres are characterized for both longitudinal and transverse polarization states (with respect to the array axis). The proposed method allows for the description of each mode evolution when varying frequency. As a consequence, full characterization of the guided modes with complex wavenumber is provided in terms of propagation direction, guidance or radiance, proper or improper, and physical or nonphysical conditions. Each nanosphere is modeled according to the single dipole approximation, and the metal permittivity is described by the Drude model. Modal wavenumbers are obtained by computing the complex zeroes of the homogeneous equation characterizing the field in the one dimensional periodic array. The required periodic Green’s function is analytically continued into the complex wavenumber space by using the Ewald method. Furthermore, a parametric analysis of the mode wavenumbers is performed with respect to the geometrical parameters of the array.

© 2011 OSA

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: June 3, 2011
Revised Manuscript: August 13, 2011
Manuscript Accepted: August 17, 2011
Published: September 6, 2011

Salvatore Campione, Sergiy Steshenko, and Filippo Capolino, "Complex bound and leaky modes in chains of plasmonic nanospheres," Opt. Express 19, 18345-18363 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Alitalo, C. Simovski, A. Viitanen, and S. Tretyakov, “Near-field enhancement and subwavelength imaging in the optical region using a pair of two-dimensional arrays of metal nanospheres,” Phys. Rev. B74(23), 235425 (2006). [CrossRef]
  2. S. Steshenko, F. Capolino, S. A. Tretyakov, and C. R. Simovski, “Super-Resolution and Near-Field Enhancement with Layers of Resonant Arrays of Nanoparticles,” in Applications of Metamaterials, F. Capolino, ed. (CRC Press, 2009), p. 4.1.
  3. C. R. Simovski, A. J. Viitanen, and S. A. Tretyakov, “Sub-wavelength resolution in linear arrays of plasmonic particles,” J. Appl. Phys.101(12), 123102 (2007). [CrossRef]
  4. C. Simovski, S. Tretyakov, and A. Viitanen, “Subwavelength imaging in a superlens of plasmon nanospheres,” Tech. Phys. Lett.33(3), 264–266 (2007). [CrossRef]
  5. S. Steshenko, F. Capolino, P. Alitalo, and S. A. Tretyakov, “Effective model and investigation of the near-field enhancement and subwavelength imaging properties of multilayer arrays of plasmonic nanospheres,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.84(1), 016607 (2011). [CrossRef] [PubMed]
  6. A. F. Koenderink, “Plasmon nanoparticle array waveguides for single photon and single plasmon sources,” Nano Lett.9(12), 4228–4233 (2009). [CrossRef] [PubMed]
  7. X. Liu and A. Alu, “Subwavelength leaky-wave optical nanoantennas: directive radiation from linear arrays of plasmonic nanoparticles,” Phys. Rev. B82(14), 144305 (2010). [CrossRef]
  8. J. Beermann, S. M. Novikov, K. Leosson, and S. I. Bozhevolnyi, “Surface enhanced Raman imaging: periodic arrays and individual metal nanoparticles,” Opt. Express17(15), 12698–12705 (2009). [CrossRef] [PubMed]
  9. F. Liu, Z. Cao, C. Tang, L. Chen, and Z. Wang, “Ultrathin diamond-like carbon film coated silver nanoparticles-based substrates for surface-enhanced Raman spectroscopy,” ACS Nano4(5), 2643–2648 (2010). [CrossRef] [PubMed]
  10. I. Firkowska, S. Giannona, J. A. Rojas-Chapana, K. Luecke, O. Brustle, and M. Giersig, “Biocompatible Nanomaterials and Nanodevices Promising for Biomedical Applications ” in Nanomaterials for Application in Medicine and Biology, M. Giersig, and G. B. Khomutov, eds. (Springer, Berlin, 2008), p. I.1.
  11. A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc.124(35), 10596–10604 (2002). [CrossRef] [PubMed]
  12. I. E. Sendroiu and R. M. Corn, “Nanoparticle diffraction gratings for DNA detection on photopatterned glass substrates,” Biointerphases3(3), FD23–FD29 (2008). [CrossRef] [PubMed]
  13. A. L. Fructos, S. Campione, F. Capolino, and F. Mesa, “Characterization of complex plasmonic modes in two-dimensional periodic arrays of metal nanospheres,” J. Opt. Soc. Am. B28(6), 1446–1458 (2011). [CrossRef]
  14. S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B67(20), 205402 (2003). [CrossRef]
  15. S. Y. Park and D. Stroud, “Surface-plasmon dispersion relations in chains of metallic nanoparticles: an exact quasistatic calculation,” Phys. Rev. B69(12), 125418 (2004). [CrossRef]
  16. R. A. Shore and A. D. Yaghjian, “Travelling electromagnetic waves on linear periodic arrays of lossless spheres,” Electron. Lett.41(10), 578–580 (2005). [CrossRef]
  17. R. A. Shore and A. D. Yaghjian, ““Traveling electromagnetic waves on linear periodic arrays of lossless penetrable spheres,” IEICE Trans. Commun.E88B(6), 2346–2352 (2005). [CrossRef]
  18. D. S. Citrin, “Plasmon-polariton transport in metal-nanoparticle chains embedded in a gain medium,” Opt. Lett.31(1), 98–100 (2006). [CrossRef] [PubMed]
  19. A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B74(3), 033402 (2006). [CrossRef]
  20. A. Alù and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B74(20), 205436 (2006). [CrossRef]
  21. R. A. Shore and A. D. Yaghjian, “Complex Waves on 1D, 2D, and 3D Periodic Arrays of Lossy and Lossless Magnetodielectric Spheres,” AFRL-RY-HS-TR-2010–0019, (Air Force Research Laboratory, Hanscom, MA 2010).
  22. K. B. Crozier, E. Togan, E. Simsek, and T. Yang, “Experimental measurement of the dispersion relations of the surface plasmon modes of metal nanoparticle chains,” Opt. Express15(26), 17482–17493 (2007). [CrossRef] [PubMed]
  23. T. Yang and K. B. Crozier, “Dispersion and extinction of surface plasmons in an array of gold nanoparticle chains: influence of the air/glass interface,” Opt. Express16(12), 8570–8580 (2008). [CrossRef] [PubMed]
  24. A. Alù and N. Engheta, “Effect of small random disorders and imperfections on the performance of arrays of plasmonic nanoparticles,” N. J. Phys.12(1), 013015 (2010). [CrossRef]
  25. S. Campione and F. Capolino, “Linear and Planar Periodic Arrays of Metallic Nanospheres: Fabrication, Optical Properties and Applications,” in Selected Topics in Metamaterials and Photonic Crystals, A. Andreone, A. Cusano, A. Cutolo, and V. Galdi, eds. (World Scientific Publishing, 2011), pp. 141–194.
  26. M. Conforti and M. Guasoni, “Dispersive properties of linear chains of lossy metal nanoparticles,” J. Opt. Soc. Am. B27(8), 1576–1582 (2010). [CrossRef]
  27. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  28. S. Steshenko and F. Capolino, “Single Dipole Approximation for Modeling Collections of Nanoscatterers,” in Theory and Phenomena of Metamaterials, F. Capolino, ed. (CRC Press, 2009), p. 8.1.
  29. D. E. Muller, “A Method for Solving Algebraic Equations Using an Automatic Computer,” Math. Tables Other Aids Comput.10(56), 208–215 (1956). [CrossRef]
  30. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes: the art of scientific computing (Cambridge University Press, 2007).
  31. “IMSL Fortran Numerical Library,” (Visual Numerics Corporate Headquarters, 2500 Wilcrest Drive, Suite 200, Houston, TX), www.vni.com .
  32. F. Capolino, D. R. Wilton, and W. A. Johnson, “Efficient computation of the 3D Green's function for the Helmholtz operator for a linear array of point sources using the Ewald method,” J. Comput. Phys.223(1), 250–261 (2007). [CrossRef]
  33. V. R. Komanduri, F. Capolino, D. R. Jackson, and D. R. Wilton, “Computation of the one-dimensional free-space periodic green's function for leaky waves using the ewald method,” in Proc. URSI Gen. Ass.(Chicago, IL, 2008).
  34. F. T. Celepcikay, D. R. Wilton, D. R. Jackson, and F. Capolino, “Choosing splitting parameters and summation limits in the numerical evaluation of 1-D and 2-D periodic Green's functions using the Ewald method,” Radio Sci.43(6), RS6S01 (2008). [CrossRef]
  35. J. D. Jackson, Classical Electrodynamics (Wiley, 1998).
  36. V. A. Markel, V. N. Pustovit, S. V. Karpov, A. V. Obuschenko, V. S. Gerasimov, and I. L. Isaev, “Electromagnetic density of states and absorption of radiation by aggregates of nanospheres with multipole interactions,” Phys. Rev. B70(5), 054202 (2004). [CrossRef]
  37. D. W. Mackowski, “Calculation of total cross sections of multiple-sphere clusters,” J. Opt. Soc. Am. A11(11), 2851–2861 (1994). [CrossRef]
  38. R. Ruppin, “Evaluation of extended Maxwell-Garnett theories,” Opt. Commun.182(4–6), 273–279 (2000). [CrossRef]
  39. W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B Condens. Matter39(14), 9852–9858 (1989). [CrossRef] [PubMed]
  40. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover Publications, 1965).
  41. F. Capolino, D. R. Jackson, and D. R. Wilton, “Field Representations in Periodic Artificial Materials Excited by a Source,” in Theory and Phenomena of Metamaterials, F. Capolino, ed. (CRC Press, 2009), p. 12.1.
  42. L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves (IEEE Press, 1994).
  43. P. Baccarelli, S. Paulotto, and C. Di Nallo, “Full-wave analysis of bound and leaky modes propagating along 2D periodic printed structures with arbitrary metallisation in the unit cell,” IET Proc. Microwaves, Antennas Propag.1(1), 217–225 (2007). [CrossRef]
  44. F. Capolino, D. R. Jackson, D. R. Wilton, and L. B. Felsen, “Comparison of methods for calculating the field excited by a dipole near a 2-D periodic material,” IEEE Trans. Antenn. Propag.55(6), 1644–1655 (2007). [CrossRef]
  45. F. Capolino, D. R. Jackson, and D. R. Wilton, “Fundamental properties of the field at the interface between air and a periodic artificial material excited by a line source,” IEEE Trans. Antenn. Propag.53(1), 91–99 (2005). [CrossRef]
  46. A. Alù, A. Salandrino, and N. Engheta, “Negative effective permeability and left-handed materials at optical frequencies,” Opt. Express14(4), 1557–1567 (2006). [CrossRef] [PubMed]
  47. I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B62(23), 15299–15302 (2000). [CrossRef]
  48. A. A. Oliner and D. R. Jackson, “Leaky-wave antennas,” in Antenna Engineering Handbook, J. Volakis, ed. (McGraw Hill, 2007), p. 11.1.
  49. F. Capolino, D. R. Jackson, and D. R. Wilton, “Mode excitation from sources in two-dimensional EBG waveguides using the array scanning method,” IEEE Microw. Wirel. Compon. Lett.15(2), 49–51 (2005). [CrossRef]
  50. P. J. B. Clarricoats and K. R. Slinn, “Complex modes of propagation in dielectric-loaded circular waveguide,” Electron. Lett.1(5), 145–146 (1965). [CrossRef]
  51. J. D. Rhodes, “General constraints on propagation characteristics of electromagnetic waves in uniform inhomogeneous waveguides,” in Proc. Inst. Electr. Eng. 118, 849–856 (1971).
  52. T. F. Jablonski, “Complex modes in open lossless dielectric waveguides,” J. Opt. Soc. Am. A11(4), 1272–1282 (1994). [CrossRef]
  53. T. Rozzi, L. Pierantoni, and M. Farina, “General constraints on the propagation of complex waves in closed lossless isotropic waveguides,” IEEE Trans. Microw. Theory Tech.46(5), 512–516 (1998). [CrossRef]
  54. R. Islam and G. V. Eleftheriades, “On the Independence of the Excitation of Complex Modes in Isotropic Structures,” IEEE Trans. Antenn. Propag.58(5), 1567–1578 (2010). [CrossRef]
  55. J. R. James, “Leaky waves on a dielectric rod,” Electron. Lett.5(11), 252–254 (1969). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited