OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 19 — Sep. 12, 2011
  • pp: 18364–18371

Rapidly frequency-swept optical beat source for continuous wave terahertz generation

Min Yong Jeon, Namje Kim, Sang-Pil Han, Hyunsung Ko, Han-Cheol Ryu, Dae-Su Yee, and Kyung Hyun Park  »View Author Affiliations


Optics Express, Vol. 19, Issue 19, pp. 18364-18371 (2011)
http://dx.doi.org/10.1364/OE.19.018364


View Full Text Article

Enhanced HTML    Acrobat PDF (1043 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a rapidly frequency-swept optical beat source for continuous wave (CW) THz generation using a wavelength swept laser and a fixed distributed feedback (DFB) laser. The range of the sweeping bandwidth is about 17.3 nm (2.16 THz), 1541.42–1558.72 nm. The achieved side mode suppression ratio for both wavelengths within the full sweeping range is more than 45 dB. We observe CW THz signals for tunable optical beat sources using a fiber coupled CW THz measurement system to confirm the feasibility of using our frequency swept optical beat source as a CW THz radiation source. The THz output signal falls to the thermal noise level of the low-temperature grown (LTG) InGaAs photomixer beyond 1.0 THz. The rapidly frequency-swept optical beat source will be useful for generating high-speed tunable CW THz radiation.

© 2011 OSA

OCIS Codes
(140.3500) Lasers and laser optics : Lasers, erbium
(140.3600) Lasers and laser optics : Lasers, tunable
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: June 13, 2011
Revised Manuscript: July 21, 2011
Manuscript Accepted: July 22, 2011
Published: September 6, 2011

Citation
Min Yong Jeon, Namje Kim, Sang-Pil Han, Hyunsung Ko, Han-Cheol Ryu, Dae-Su Yee, and Kyung Hyun Park, "Rapidly frequency-swept optical beat source for continuous wave terahertz generation," Opt. Express 19, 18364-18371 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-19-18364


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1(2), 97–105 (2007). [CrossRef]
  2. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater.1(1), 26–33 (2002). [CrossRef] [PubMed]
  3. I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the Dawn of a New Era in Terahertz Technology,” Proc. IEEE95(8), 1611–1623 (2007). [CrossRef]
  4. T. Hattori, K. Ohta, R. Rungsawang, and K. Tukamoto, “Phase-sensitive high-speed THz imaging,” J. Phys. D Appl. Phys.37(5), 770–773 (2004). [CrossRef]
  5. A. Bartels, A. Thoma, C. Janke, T. Dekorsy, A. Dreyhaupt, S. Winnerl, and M. Helm, “High-resolution THz spectrometer with kHz scan rates,” Opt. Express14(1), 430–437 (2006). [CrossRef] [PubMed]
  6. Y. Kim and D.-S. Yee, “High-speed terahertz time-domain spectroscopy based on electronically controlled optical sampling,” Opt. Lett.35(22), 3715–3717 (2010). [CrossRef] [PubMed]
  7. B. Sartorius, M. Schlak, D. Stanze, H. Roehle, H. Kunzel, D. Schmidt, H.-G. Bach, R. Kunkel, and M. Schell, “Continuous wave terahertz systems exploiting 15 µm telecom technologies,” Opt. Express17(17), 15001–15007 (2009). [CrossRef] [PubMed]
  8. A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Gusten, and M. Gruninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” N. J. Phys.12(4), 043017 (2010). [CrossRef]
  9. N. Kim, J. Shin, E. Sim, C. W. Lee, D.-S. Yee, M. Y. Jeon, Y. Jang, and K. H. Park, “Monolithic dual-mode distributed feedback semiconductor laser for tunable continuous-wave terahertz generation,” Opt. Express17(16), 13851–13859 (2009). [CrossRef] [PubMed]
  10. M. Y. Jeon, N. Kim, J. Shin, J. S. Jeong, S.-P. Han, C. W. Lee, Y. A. Leem, D.-S. Yee, H. S. Chun, and K. H. Park, “Widely tunable dual-wavelength Er3+-doped fiber laser for tunable continuous-wave terahertz radiation,” Opt. Express18(12), 12291–12297 (2010). [CrossRef] [PubMed]
  11. J. R. Demers, R. T. Logan, Jr., and E. R. Brown, “An Optically Integrated Coherent Frequency-Domain THz Spectrometer with Signal-to-Noise Ratio up to 80 dB,” Microwave Photonics Tech. Digest, (Victoria, Canada, 2007) pp. 92–95.
  12. P. Gu, M. Tani, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of cw-Terahertz Radiation Using a Two-Longitudinal-Mode Laser Diode,” Jpn. J. Appl. Phys.37(Part 2, No. 8B), L976–L978 (1998). [CrossRef]
  13. R. Hui, B. Zhu, K. Demarest, C. Allen, and J. Hong, “Generation of ultrahigh-speed tunable-rate optical pulses using strongly gain-coupled dual-wavelength DFB laser diodes,” IEEE Photon. Technol. Lett.11(5), 518–520 (1999). [CrossRef]
  14. A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diode for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron.14(2), 289–294 (2008). [CrossRef]
  15. S. Osborne, S. O’Brien, E. P. O’Reilly, P. G. Huggard, and B. N. Ellison, “Generation of CW 0.5 THz radiation by photomixing the output of a two-colour 1.49 μm Fabry-Perot diode laser,” Electron. Lett.44(4), 296–298 (2008). [CrossRef]
  16. S. H. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express11(22), 2953–2963 (2003). [CrossRef] [PubMed]
  17. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express14(8), 3225–3237 (2006). [CrossRef] [PubMed]
  18. S.-W. Lee, C. S. Kim, and B.-M. Kim, “External line-cavity wavelength-swept source at 850 nm for optical coherence tomography,” IEEE Photon. Technol. Lett.19(3), 176–178 (2007). [CrossRef]
  19. M. Y. Jeon, J. Zhang, Q. Wang, and Z. Chen, “High-speed and wide bandwidth Fourier domain mode-locked wavelength swept laser with multiple SOAs,” Opt. Express16(4), 2547–2554 (2008). [CrossRef] [PubMed]
  20. B. C. Lee, E.-J. Jung, C.-S. Kim, and M. Y. Jeon, “Dynamic and static strain fiber Bragg grating sensor interrogation with a 1.3 mm Fourier domain mode-locked wavelength-swept laser,” Meas. Sci. Technol.21(9), 094008 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited