OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 19 — Sep. 12, 2011
  • pp: 18380–18392

Direction-dependent optical modes in nanoscale Silicon waveguides

Jacob T. Robinson and Michal Lipson  »View Author Affiliations

Optics Express, Vol. 19, Issue 19, pp. 18380-18392 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1511 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show that in high-index-contrast nanoscale waveguides counter propagating waves can posses distinct spatial near-field profiles. Using transmission-based near-field scanning optical microscopy (TraNSOM), we identify and map the unique near-field intensity distributions of these counter-propagating modes in a single-mode silicon waveguide. Based on this phenomenon, we design and simulate an integrated device 45 µm in length that selectively attenuates reflected light with an insertion loss of −3.6 dB and an extinction of greater than −20 dB.

© 2011 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.3240) Optical devices : Isolators
(180.4243) Microscopy : Near-field microscopy

ToC Category:
Integrated Optics

Original Manuscript: June 15, 2011
Revised Manuscript: August 6, 2011
Manuscript Accepted: August 14, 2011
Published: September 6, 2011

Jacob T. Robinson and Michal Lipson, "Direction-dependent optical modes in nanoscale Silicon waveguides," Opt. Express 19, 18380-18392 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Cho, P. K`apur, and K. C. Saraswat, “Power Comparison Between High-Speed Electrical and Optical Interconnects for Interchip Communication,” J. Lightwave Technol. 22(9), 2021–2033 (2004). [CrossRef]
  2. M. Lipson, “Guiding, modulating, and emitting light on Silicon-challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005). [CrossRef]
  3. R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quant. 12(6), 1678–1687 (2006). [CrossRef]
  4. T. Barwicz, H. Byun, F. Gan, C. W. Holzwarth, M. A. Popovic, P. T. Rakich, M. R. Watts, E. P. Ippen, F. X. Kärtner, H. I. Smith, J. S. Orcutt, R. J. Ram, V. Stojanovic, O. O. Olubuyide, J. L. Hoyt, S. Spector, M. Geis, M. Grein, T. Lyszczarz, and J. U. Yoon, “Silicon photonics for compact, energy-efficient interconnects,” J. Opt. Net. 6(1), 63–73 (2007). [CrossRef]
  5. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004). [CrossRef] [PubMed]
  6. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004). [CrossRef] [PubMed]
  7. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005). [CrossRef] [PubMed]
  8. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007). [CrossRef]
  9. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005). [CrossRef] [PubMed]
  10. S. F. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nat. Photonics 1(5), 293–296 (2007). [CrossRef]
  11. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006). [CrossRef] [PubMed]
  12. R. Espinola, J. Dadap, R. Osgood, S. McNab, and Y. Vlasov, “C-band wavelength conversion in silicon photonic wire waveguides,” Opt. Express 13(11), 4341–4349 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-11-4341 . [CrossRef] [PubMed]
  13. M. Borselli, T. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1530 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-5-1515 . [CrossRef] [PubMed]
  14. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley-Interscience, 1991)
  15. R. Ramaswami and K. N. Sivarajan, Optical networks: a practical perspective (Morgan Kaufmann, 2002)
  16. R. B. Dyott, Elliptical Fiber Waveguides (Artech House Publishers, 1995)
  17. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995). [CrossRef]
  18. S.-H. Kim, R. Takei, Y. Shoji, and T. Mizumoto, “Single-trench waveguide TE-TM mode converter,” Opt. Express 17(14), 11267–11273 (2009), http://www.opticsexpress.org/abstract.cfm?URI=oe-17-14-11267 . [CrossRef] [PubMed]
  19. Z. Wang and D. Dai, “Ultrasmall Si-nanowire-based polarization rotator,” J. Opt. Soc. Am. B 25(5), 747–753 (2008). [CrossRef]
  20. W. C. L. Hopman, K. O. van der Werf, A. J. F. Hollink, W. Bogaerts, V. Subramaniam, and R. M. de Ridder, “Nano-mechanical tuning and imaging of a photonic crystal micro-cavity resonance,” Opt. Express 14(19), 8745–8752 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-19-8745 . [CrossRef] [PubMed]
  21. J. T. Robinson, S. F. Preble, and M. Lipson, “Imaging highly confined modes in sub-micron scale silicon waveguides using Transmission-based Near-field Scanning Optical Microscopy,” Opt. Express 14(22), 10588–10595 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-22-10588 . [CrossRef] [PubMed]
  22. M. Abashin, U. Levy, K. Ikeda, and Y. Fainman, “Effects produced by metal-coated near-field probes on the performance of silicon waveguides and resonators,” Opt. Lett. 32(17), 2602–2604 (2007), http://ol.osa.org/abstract.cfm?URI=ol-32-17-2602 . [CrossRef] [PubMed]
  23. B. Cluzell, L. Lalouat, P. Velha, E. Picard, D. Peyrade, J.-C. Rodier, T. Charvolin, P. Lalanne, F. de Fornel, and E. Hadji, “A near-field actuated optical nanocavity,” Opt. Express 16(1), 279–286 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-1-279 . [CrossRef] [PubMed]
  24. L. Lalouat, B. Cluzel, F. de Fornel, P. Velha, P. Lalanne, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Subwavelength imaging of light confinement in high-Q/small-V photonic crystal nanocavity,” Appl. Phys. Lett. 92(11), 111111 (2008). [CrossRef]
  25. M. Abashin, P. Tortora, I. Märki, U. Levy, W. Nakagawa, L. Vaccaro, H. Herzig, and Y. Fainman, “Near-field characterization of propagating optical modes in photonic crystal waveguides,” Opt. Express 14(4), 1643–1657 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-4-1643 . [CrossRef] [PubMed]
  26. I. Stefanon, S. Blaize, A. Bruyant, S. Aubert, G. Lerondel, R. Bachelot, and P. Royer, “Heterodyne detection of guided waves using a scattering-type Scanning Near-Field Optical Microscope,” Opt. Express 13(14), 5553–5564 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-14-5553 . [CrossRef] [PubMed]
  27. M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking femtosecond laser pulses in space and time,” Science 294(5544), 1080–1082 (2001). [CrossRef] [PubMed]
  28. J. T. Robinson and M. Lipson, “Far-field control of radiation from an individual optical nanocavity: analogue to an optical dipole,” Phys. Rev. Lett. 100(4), 043902–043904 (2008). [CrossRef] [PubMed]
  29. D. Marcuse, Theory of dielectric optical waveguides (Academic Press, Inc., 1974). pp. 102–103; 4–5
  30. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003), http://ol.osa.org/abstract.cfm?URI=ol-28-15-1302 . [CrossRef] [PubMed]
  31. C. Pollock and M. Lipson, Integrated Photonics (Springer, 2003)
  32. Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004), http://www.opticsexpress.org/abstract.cfm?URI=oe-12-8-1622 . [CrossRef] [PubMed]
  33. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987). [CrossRef]
  34. H. Shimizu and Y. Nakano, “Fabrication and Characterization of an InGaAsp/InP Active Waveguide Optical Isolator With 14.7 dB/mm TE Mode Nonreciprocal Attenuation,” J. Lightwave Technol. 24(1), 38–43 (2006). [CrossRef]
  35. Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117–071117 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited