OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 19 — Sep. 12, 2011
  • pp: 18410–18422

Energy-bandwidth trade-off in all-optical photonic crystal microcavity switches

Mikkel Heuck, Philip Trøst Kristensen, and Jesper Mørk  »View Author Affiliations


Optics Express, Vol. 19, Issue 19, pp. 18410-18422 (2011)
http://dx.doi.org/10.1364/OE.19.018410


View Full Text Article

Enhanced HTML    Acrobat PDF (1934 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The performance of all-optical switches is a compromise between the achievable bandwidth of the switched signal and the energy requirement of the switching operation. In this work we consider a system consisting of a photonic crystal cavity coupled to two input and two output waveguides. As a specific example of a switching application, we investigate the demultiplexing of an optical time division multiplexed signal. To quantify the energy-bandwidth trade-off, we introduce a figure of merit for the detection of the demultiplexed signal. In such investigations it is crucial to consider patterning effects, which occur on time scales that are longer than the bit period. Our analysis is based on a coupled mode theory, which allows for an extensive investigation of the influence of the system parameters on the switching dynamics. The analysis is shown to provide new insights into the ultrafast dynamics of the switching operation, and the results show optimum parameter ranges that may serve as design guidelines in device fabrication.

© 2011 OSA

OCIS Codes
(200.4560) Optics in computing : Optical data processing
(160.5298) Materials : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: July 1, 2011
Revised Manuscript: August 8, 2011
Manuscript Accepted: August 22, 2011
Published: September 6, 2011

Citation
Mikkel Heuck, Philip Trøst Kristensen, and Jesper Mørk, "Energy-bandwidth trade-off in all-optical photonic crystal microcavity switches," Opt. Express 19, 18410-18422 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-19-18410


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nature Mater.3, 211–219 (2004). [CrossRef]
  2. J. Y. Lee, L. H. Yin, G. P. Agraval, and P. M. Fauchet, “Ultrafast optical switching based on nonlinear polarization rotation in silicon waveguides,” Opt. Express18, 11514–11523 (2010). [CrossRef] [PubMed]
  3. M. Waldow, T. Plotzing, M. Gottheil, M. Forst, and J. Bolten, “25 ps all-optical switching in oxygen implanted silicon-on-insulator microring resonator,” Opt. Express16, 7693–7702 (2008). [CrossRef] [PubMed]
  4. C. Husko, A. De Rossi, S. Combré, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett.94, 021111 (2009). [CrossRef]
  5. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4, 477–483 (2010). [CrossRef]
  6. L. O’Faolain, D. M. Beggs, T. P. White, T. Kampfrath, K. Kuipers, and T. F. Krauss, “Compact optical switches and modulators based on dispersion engineered photonic crystals,” IEEE Photon. J.2, 404–414 (2010). [CrossRef]
  7. O. Wada, “Recent progress in semiconductor-based photonic signal-processing devices,” IEEE J. Sel. Top. Quantum Electron.17, 309–319 (2011). [CrossRef]
  8. P. A. Andrekson, H. Sunnerud, S. Oda, T. Nishitani, and J. Yang, “Ultrafast, atto-Joule switch using fiber parametric amplifier operated in saturation,” Opt. Express16, 10956–10961 (2008). [CrossRef] [PubMed]
  9. J. Xu, X. Zhang, and J. Mørk, “Investigation of patterning effects in ultrafast SOA-based optical switches,” IEEE J. Quantum Electron.46, 87–94 (2010). [CrossRef]
  10. J. B. Khurgin, “Performance of nonlinear photonic crystal devices at high bit rates,” Opt. Lett.30, 643–645 (2005). [CrossRef] [PubMed]
  11. M. F. Yanik, S. Fan, M. Soljacic, and J. D. Joannopoulos, “All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry,” Opt. Lett.28, 2506–2508 (2003). [CrossRef] [PubMed]
  12. J. Bravo-Abad, S. Fan, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Modeling nonlinear optical phenomena in nanophotonics,” J. Lightwave Technol.25, 2539–2546 (2007). [CrossRef]
  13. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, Molding the Flow of Light (Princeton University Press, 2008)
  14. H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A41, 5187–5198 (1990). [CrossRef] [PubMed]
  15. J. Mørk, F. Öhmann, and S. Bischoff, “Analytical expression for the bit error rate of cascaded all-optical regenerators,” Photon. Technol. Lett.15, 1479–1481 (2003). [CrossRef]
  16. R. W. Boyd, Nonlinear Optics (Academic Press, 2008)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited