OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 19 — Sep. 12, 2011
  • pp: 18440–18451

Offset frequency dynamics and phase noise properties of a self-referenced 10 GHz Ti:sapphire frequency comb

Dirk C. Heinecke, Albrecht Bartels, and Scott A. Diddams  »View Author Affiliations

Optics Express, Vol. 19, Issue 19, pp. 18440-18451 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1602 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper shows the experimental details of the stabilization scheme that allows full control of the repetition rate and the carrier-envelope offset frequency of a 10 GHz frequency comb based on a femtosecond Ti:sapphire laser. Octave-spanning spectra are produced in nonlinear microstructured optical fiber, in spite of the reduced peak power associated with the 10 GHz repetition rate. Improved stability of the broadened spectrum is obtained by temperature-stabilization of the nonlinear optical fiber. The carrier-envelope offset frequency and the repetition rate are simultaneously frequency stabilized, and their short- and long-term stabilities are characterized. We also measure the transfer of amplitude noise of the pump source to phase noise on the offset frequency and verify an increased sensitivity of the offset frequency to pump power modulation compared to systems with lower repetition rate. Finally, we discuss merits of this 10 GHz system for the generation of low-phase-noise microwaves from the photodetected pulse train.

© 2011 OSA

OCIS Codes
(120.3940) Instrumentation, measurement, and metrology : Metrology
(140.7090) Lasers and laser optics : Ultrafast lasers
(320.7160) Ultrafast optics : Ultrafast technology

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: July 11, 2011
Revised Manuscript: August 22, 2011
Manuscript Accepted: August 22, 2011
Published: September 6, 2011

Dirk C. Heinecke, Albrecht Bartels, and Scott A. Diddams, "Offset frequency dynamics and phase noise properties of a self-referenced 10 GHz Ti:sapphire frequency comb," Opt. Express 19, 18440-18451 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C.-B. Huang, Z. Jiang, D. Leaird, J. Caraquitena, and A. Weiner, “Spectral line-by-line shaping for optical and microwave arbitrary waveform generations,” Laser & Photonics Reviews2, 227–248 (2008). [CrossRef] [PubMed]
  2. A. Bartels, S. A. Diddams, C. W. Oates, G. Wilpers, J. C. Bergquist, W. H. Oskay, and L. Hollberg, “Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references,” Opt. Lett. 30, 667–669 (2005). [CrossRef] [PubMed]
  3. C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s−1,” Nature 452, 610–612 (2008). [CrossRef] [PubMed]
  4. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007). [CrossRef] [PubMed]
  5. S. T. Cundiff, “Phase stabilization of ultrashort optical pulses,” J. Opt. D: Applied Physics 35, R43 (2002). [CrossRef]
  6. F. Quinlan, S. Gee, S. Ozharar, and P. J. Delfyett, “Ultralow-jitter and -amplitude-noise semiconductor-based actively mode-locked laser,” Opt. Lett. 31, 2870–2872 (2006). [CrossRef] [PubMed]
  7. E. Yoshida and M. Nakazawa, “Wavelength tunable 1.0 ps pulse generation in 1.530–1.555 μm region from PLL, regeneratively modelocked fibre laser,” Electronics Letters 34, 1753–1754 (1998). [CrossRef]
  8. R. Paschotta, L. Krainer, S. Lecomte, G. J. Spühler, S. C. Zeller, A. Aschwanden, D. Lorenser, H. J. Unold, K. J. Weingarten, and U. Keller, “Picosecond pulse sources with multi-GHz repetition rates and high output power,” New Journal of Physics 6, 174 (2004). [CrossRef]
  9. S. Zeller, T. Südmeyer, K. Weingarten, and U. Keller, “Passively modelocked 77 GHz Er:Yb:glass laser,” Electronics Letters 43, 32–33 (2007). [CrossRef]
  10. T. F. Carruthers and I. N. Duling, “10-GHz, 1.3-ps erbium fiber laser employing soliton pulse shortening,” Opt. Lett. 21, 1927–1929 (1996). [CrossRef] [PubMed]
  11. A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express 19, 6155–6163 (2011). [CrossRef] [PubMed]
  12. F. Quinlan, G. Ycas, S. Osterman, and S. A. Diddams, “A 12.5 GHz-Spaced Optical Frequency Comb Spanning ¿400 nm for Infrared Astronomical Spectrograph Calibration,” Rev. Sci. Ins. 81, 063105 (2010). [CrossRef]
  13. M. S. Kirchner, D. A. Braje, T. M. Fortier, A. M. Weiner, L. Hollberg, and S. A. Diddams, “Generation of 20 GHz, sub-40 fs pulses at 960 nm via repetition-rate multiplication,” Opt. Lett. 34, 872–874 (2009). [CrossRef] [PubMed]
  14. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. Hnsch, and T. Udem, “Fabry-Perot filter cavities for wide-spaced frequency combs with large spectral bandwidth,” Applied Physics B: Lasers and Optics 96, 251–256 (2009). [CrossRef]
  15. P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full Stabilization of a Microresonator-Based Optical Frequency Comb,” Phys. Rev. Lett. 101, 053903 (2008). [CrossRef] [PubMed]
  16. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable Optical Frequency Comb with a Crystalline Whispering Gallery Mode Resonator,” Phys. Rev. Lett. 101, 093902 (2008). [CrossRef] [PubMed]
  17. D. Braje, L. Hollberg, and S. Diddams, “Brillouin-Enhanced Hyperparametric Generation of an Optical Frequency Comb in a Monolithic Highly Nonlinear Fiber Cavity Pumped by a cw Laser,” Phys. Rev. Lett. 102, 193902 (2009).
  18. S. Xiao, L. Hollberg, and S. A. Diddams, “Generation of a 20 GHz train of subpicosecond pulses with a stabilized optical-frequency-comb generator,” Opt. Lett. 34, 85–87 (2009). [CrossRef]
  19. H. Telle, G. Steinmeyer, A. Dunlop, J. Stenger, D. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Applied Physics B: Lasers and Optics 69, 327–332 (1999). [CrossRef]
  20. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis,” Science 288, 635–639 (2000). [CrossRef] [PubMed]
  21. D. C. Heinecke, A. Bartels, T. M. Fortier, D. A. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium,” Phys. Rev. A 80, 053806 (2009). [CrossRef]
  22. A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz Self-Referenced Optical Frequency Comb,” Science 326, 681 (2009). [CrossRef] [PubMed]
  23. A. Bartels, D. Heinecke, and S. A. Diddams, “Passively mode-locked 10 GHz femtosecond Ti:sapphire laser,” Opt. Lett. 33, 1905–1907 (2008). [CrossRef] [PubMed]
  24. T. M. Fortier, A. Bartels, and S. A. Diddams, “Octave-spanning Ti:sapphire laser with a repetition rate ¿ 1 GHz for optical frequency measurements and comparisons,” Opt. Lett. 31, 1011–1013 (2006). [CrossRef] [PubMed]
  25. Mention of specific trade names is for technical information only and does not constitute an endorsement by NIST.
  26. For typical frequency counters the input frequency is limited to a few hundreds of megahertz. Thus, the frequencies to analyze in the range of gigahertz have to be converted to lower values to enable counter measurements. In the process of difference or sum frequency generation in a mixing device the actual frequency fluctuations of the input frequencies are preserved. Using a stable reference frequency this allows to shift frequencies without affecting the frequency stability. In contrast, in a frequency division process the noise density and therefore the frequency fluctuations are reduced by the division factor. This leads to an increase in frequency stability. For the offset frequency stabilization and analysis we use a frequency division step to reduce phase fluctuations making the phase lock more robust by extending the capture range of the phase detector. In the data evaluation we account for this division factor to recover the original offset frequency stability.
  27. Analog Devices, Ultrahigh Speed Phase/Frequency Discriminator AD9901.
  28. A. Yariv, Optical Electronics (Saunders College Publishing, Orlando, 1991), 4th ed.
  29. C. Harder, J. Katz, S. Margalit, J. Shacham, and A. Yariv, “Noise equivalent circuit of a semiconductor laser diode,” IEEE Journal of Quantum Electronics QE-18, 333–337 (1982). [CrossRef]
  30. R. P. Scott, T. D. Mulder, K. A. Baker, and B. H. Kolner, “Amplitude and phase noise sensitivity of modelocked Ti:sapphire lasers in terms of a complex noise transfer function,” Opt. Express 15, 9090–9095 (2007). [CrossRef] [PubMed]
  31. T. M. Fortier, J. Ye, S. T. Cundiff, and R. S. Windeler, “Nonlinear phase noise generated in air-silica microstructure fiber and its effect on carrier-envelope phase,” Opt. Lett. 27, 445–447 (2002). [CrossRef]
  32. B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible Lasers with Subhertz Linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999). [CrossRef]
  33. T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photon. 5, 425–429 (2011). [CrossRef]
  34. P.-L. Liu, K. J. Williams, M. Y. Frankel, and R. D. Esman, “Saturation characteristics of fast photodetectors,” IEEE Transactions on Microwave Theory and Techniques47, 1297–1303 (1999). [CrossRef]
  35. S. A. Diddams, M. Kirchner, T. Fortier, D. Braje, A. M. Weiner, and L. Hollberg, “Improved signal-to-noise ratio of 10 GHz microwave signals generated with a mode-filtered femtosecond laser frequency comb,” Opt. Express 17, 3331–3340 (2009). [CrossRef] [PubMed]
  36. J. Taylor, S. Datta, A. Hati, C. Nelson, F. Quinlan, A. Joshi, and S. Diddams, “Characterization of power-to-phase conversion in high-speed p-i-n photodiodes,” IEEE Photonics Journal3, 140–151 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited