OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 19 — Sep. 12, 2011
  • pp: 18452–18457

Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe

Jun-long Kou, Sun-jie Qiu, Fei Xu, and Yan-qing Lu  »View Author Affiliations

Optics Express, Vol. 19, Issue 19, pp. 18452-18457 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (832 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally demonstrate an all-silica first-order fiber Bragg grating (FBG) for high temperature sensing by focused ion beam (FIB) machining in a fiber probe tapered to a point. This 61-period FBG is compact (~36.6 μm long and ~6.5 μm in diameter) with 200-nm-deep shallow grooves. We have tested the sensor from room temperature to around 500 °C and it shows a temperature sensitivity of nearly 20 pm/°C near the resonant wavelength of 1550 nm. This kind of sensor takes up little space because of its unique geometry and small size and may be integrated in devices that work in harsh environment or for detecting small objects.

© 2011 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.6780) Instrumentation, measurement, and metrology : Temperature

ToC Category:

Original Manuscript: July 12, 2011
Revised Manuscript: August 7, 2011
Manuscript Accepted: August 22, 2011
Published: September 6, 2011

Jun-long Kou, Sun-jie Qiu, Fei Xu, and Yan-qing Lu, "Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe," Opt. Express 19, 18452-18457 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. P. Wang, “Review of long period fiber gratings written by CO2 laser,” J. Appl. Phys. 108(8), 081101 (2010). [CrossRef]
  2. Y.-J. Rao, Y.-P. Wang, Z. L. Ran, and T. Zhu, “Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses,” J. Lightwave Technol. 21(5), 1320–1327 (2003). [CrossRef]
  3. Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. Hirao, “Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses,” Opt. Lett. 24(10), 646–648 (1999). [CrossRef] [PubMed]
  4. L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Magi, M. J. Withford, and B. J. Eggleton, “Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres,” Electron. Lett. 41(11), 638–640 (2005). [CrossRef]
  5. C. Y. Lin and L. A. Wang, “A wavelength- and loss-tunable band-rejection filter based on corrugated long-period fiber grating,” IEEE Photon. Technol. Lett. 13(4), 332–334 (2001). [CrossRef]
  6. T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(9), 1926–1928 (2005). [CrossRef]
  7. G. Brambilla, V. Pruneri, L. Reekie, C. Contardi, D. Milanese, and M. Ferraris, “Bragg gratings in ternary SiO2:SnO2:Na2O optical glass fibers,” Opt. Lett. 25(16), 1153–1155 (2000). [CrossRef] [PubMed]
  8. F. Xu, G. Brambilla, J. Feng, and Y.-Q. Lu, “A microfiber Bragg grating based on a microstructured rod: a proposal,” IEEE Photon. Technol. Lett. 22(4), 218–220 (2010). [CrossRef]
  9. J.-l. Kou, Z.-d. Huang, G. Zhu, F. Xu, and Y.-q. Lu, “Wave guiding properties and sensitivity of D-shaped optical fiber microwire devices,” Appl. Phys. B 102(3), 615–619 (2011). [CrossRef]
  10. H. Xuan, W. Jin, and M. Zhang, “CO2 laser induced long period gratings in optical microfibers,” Opt. Express 17(24), 21882–21890 (2009). [CrossRef] [PubMed]
  11. H. Xuan, W. Jin, and S. Liu, “Long-period gratings in wavelength-scale microfibers,” Opt. Lett. 35(1), 85–87 (2010). [CrossRef] [PubMed]
  12. A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41(4), 176–178 (2005). [CrossRef]
  13. J. L. Kou, J. Feng, Q. J. Wang, F. Xu, and Y. Q. Lu, “Microfiber-probe-based ultrasmall interferometric sensor,” Opt. Lett. 35(13), 2308–2310 (2010). [CrossRef] [PubMed]
  14. J. L. Kou, J. Feng, L. Ye, F. Xu, and Y. Q. Lu, “Miniaturized fiber taper reflective interferometer for high temperature measurement,” Opt. Express 18(13), 14245–14250 (2010). [CrossRef] [PubMed]
  15. F. Renna, D. Cox, and G. Brambilla, “Efficient sub-wavelength light confinement using surface plasmon polaritons in tapered fibers,” Opt. Express 17(9), 7658–7663 (2009). [CrossRef] [PubMed]
  16. W. Streifer, D. Scifres, and R. Burnham, “Coupling coefficients for distributed feedback single- and double-heterostructure diode lasers,” IEEE J. Quantum Electron. 11(11), 867–873 (1975). [CrossRef]
  17. W. Streifer and A. Hardy, “Analysis of two-dimensional waveguides with misaligned or curved gratings,” IEEE J. Quantum Electron. 14(12), 935–943 (1978). [CrossRef]
  18. M. L. Åslund, J. Canning, M. Stevenson, and K. Cook, “Thermal stabilization of Type I fiber Bragg gratings for operation up to 600 ° C,” Opt. Lett. 35(4), 586–588 (2010). [CrossRef] [PubMed]
  19. H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008). [CrossRef] [PubMed]
  20. S. Ju, P. R. Watekar, and W.-T. Han, “Enhanced sensitivity of the FBG temperature sensor based on the PbO-GeO2-SiO2 glass optical fiber,” J. Lightwave Technol. 28(18), 2697–2700 (2010). [CrossRef]
  21. J. Wang, B. Dong, E. Lally, J. Gong, M. Han, and A. Wang, “Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry-Perot interferometers,” Opt. Lett. 35(5), 619–621 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited