OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 19 — Sep. 12, 2011
  • pp: 18470–18478

THz propagation in kagome hollow-core microstructured fibers

Jessienta Anthony, Rainer Leonhardt, Sergio G. Leon-Saval, and Alexander Argyros  »View Author Affiliations


Optics Express, Vol. 19, Issue 19, pp. 18470-18478 (2011)
http://dx.doi.org/10.1364/OE.19.018470


View Full Text Article

Enhanced HTML    Acrobat PDF (1731 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate single mode terahertz (THz) guidance in hollow-core kagome microstructured fibers over a broad frequency bandwidth. The fibers are characterized using a THz time-domain spectroscopy (THz-TDS) setup, incorporating specially designed THz lenses to achieve good mode overlap with the fundamental mode field distribution. Losses 20 times lower than the losses of the fiber material are observed in the experiments, as well as broad frequency ranges of low dispersion, characteristic of hollow-core fibers.

© 2011 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(060.4005) Fiber optics and optical communications : Microstructured fibers
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: July 18, 2011
Revised Manuscript: August 15, 2011
Manuscript Accepted: August 22, 2011
Published: September 6, 2011

Citation
Jessienta Anthony, Rainer Leonhardt, Sergio G. Leon-Saval, and Alexander Argyros, "THz propagation in kagome hollow-core microstructured fibers," Opt. Express 19, 18470-18478 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-19-18470


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett.69(16), 2321 (1996). [CrossRef]
  2. D. J. Cook and R. M. Hochstrasser, “Intense terahertz pulses by four-wave rectification in air,” Opt. Lett.25(16), 1210–1212 (2000). [CrossRef] [PubMed]
  3. B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics1(9), 517–525 (2007). [CrossRef]
  4. B. Clough, J. Liu, and X.-C. Zhang, “Laser-induced photoacoustics influenced by single-cycle terahertz radiation,” Opt. Lett.35(21), 3544–3546 (2010). [CrossRef] [PubMed]
  5. D. Stehr, C. M. Morris, C. Schmidt, and M. S. Sherwin, “High-performance fiber-laser-based terahertz spectrometer,” Opt. Lett.35(22), 3799–3801 (2010). [CrossRef] [PubMed]
  6. K. Fukunaga, Y. Ogawa, S. Hayashi, and I. Hosako, “Terahertz spectroscopy for art conservation,” IEICE Electron. Express4(8), 258–263 (2007). [CrossRef]
  7. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express11(20), 2549–2554 (2003). [CrossRef] [PubMed]
  8. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444(7119), 597–600 (2006). [CrossRef] [PubMed]
  9. S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett.76(15), 1987 (2000). [CrossRef]
  10. R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys.88(7), 4449 (2000). [CrossRef]
  11. R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Opt. Lett.24(20), 1431–1433 (1999). [CrossRef] [PubMed]
  12. J. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express12(21), 5263–5268 (2004). [CrossRef] [PubMed]
  13. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett.26(11), 846–848 (2001). [CrossRef] [PubMed]
  14. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432(7015), 376–379 (2004). [CrossRef] [PubMed]
  15. P. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003). [CrossRef] [PubMed]
  16. A. Argyros, “Microstructured polymer optical fibers,” J. Lightwave Technol.27(11), 1571–1579 (2009). [CrossRef]
  17. H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett.80(15), 2634 (2002). [CrossRef]
  18. M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys.43(No. 2B), L317–L319 (2004). [CrossRef]
  19. K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express17(10), 8592–8601 (2009). [CrossRef] [PubMed]
  20. J. Anthony, R. Leonhardt, A. Argyros, and M. C. J. Large, “Characterization of a microstructured Zeonex terahertz fiber,” J. Opt. Soc. Am. B28(5), 1013–1018 (2011). [CrossRef]
  21. C. S. Ponseca, R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. Large, and M. A. van Eijkelenborg, “Transmission of terahertz radiation using a microstructured polymer optical fiber,” Opt. Lett.33(9), 902–904 (2008). [CrossRef] [PubMed]
  22. A. Argyros and J. Pla, “Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared,” Opt. Express15(12), 7713–7719 (2007). [CrossRef] [PubMed]
  23. T. D. Hedley, D. M. Bird, F. Benabid, J. C. Knight, and P. S. J. Russell, “Modelling of a novel hollow-core photonic crystal fibre,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Technical Digest (Optical Society of America, 2003), paper QTuL4.
  24. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science318(5853), 1118–1121 (2007). [CrossRef] [PubMed]
  25. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express11(10), 1243–1251 (2003). [CrossRef] [PubMed]
  26. G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St. J. Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express15(20), 12680–12685 (2007). [CrossRef] [PubMed]
  27. A. Argyros, S. G. Leon-Saval, J. Pla, and A. Docherty, “Antiresonant reflection and inhibited coupling in hollow-core square lattice optical fibres,” Opt. Express16(8), 5642–5648 (2008). [CrossRef] [PubMed]
  28. Y. H. Lo and R. Leonhardt, “Aspheric lenses for terahertz imaging,” Opt. Express16(20), 15991–15998 (2008). [CrossRef] [PubMed]
  29. Lumerical Solutions, Inc., http://www.lumerical.com .
  30. S. Atakaramians, S. Afshar V, H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express17(16), 14053–15062 (2009). [CrossRef] [PubMed]
  31. D. S. Wu, A. Argyros, and S. G. Leon-Saval, “Reducing the size of hollow terahertz waveguides,” J. Lightwave Technol.29(1), 97–103 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited