OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 19 — Sep. 12, 2011
  • pp: 18501–18509

Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers

Tze-An Liu, Nathan R. Newbury, and Ian Coddington  »View Author Affiliations

Optics Express, Vol. 19, Issue 19, pp. 18501-18509 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (957 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a simplified dual-comb LIDAR setup for precision absolute ranging that can achieve a ranging precision of 2 μm in 140 μs acquisition time. With averaging, the precision drops below 1 μm at 0.8 ms and below 200 nm at 20 ms. The system can measure the distance to multiple targets with negligible dead zones and a ranging ambiguity of 1 meter. The system is much simpler than a previous coherent dual-comb LIDAR because the two combs are replaced by free-running, saturable-absorber-based femtosecond Er fiber lasers, rather than tightly phase-locked combs, with the entire time base provided by a single 10-digit frequency counter. Despite the simpler design, the system provides a factor of three improved performance over the previous coherent dual comb LIDAR system.

© 2011 OSA

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(280.3640) Remote sensing and sensors : Lidar

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: July 21, 2011
Revised Manuscript: August 22, 2011
Manuscript Accepted: August 22, 2011
Published: September 7, 2011

Tze-An Liu, Nathan R. Newbury, and Ian Coddington, "Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers," Opt. Express 19, 18501-18509 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27(11), B51–B62 (2010). [CrossRef]
  2. N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011). [CrossRef]
  3. K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39(30), 5512–5517 (2000). [CrossRef] [PubMed]
  4. N. Schuhler, Y. Salvadé, S. Lévêque, R. Dändliker, and R. Holzwarth, “Frequency-comb-referenced two-wavelength source for absolute distance measurement,” Opt. Lett. 31(21), 3101–3103 (2006). [CrossRef] [PubMed]
  5. Y. Salvadé, N. Schuhler, S. Lévêque, and S. Le Floch, “High-accuracy absolute distance measurement using frequency comb referenced multiwavelength source,” Appl. Opt. 47(14), 2715–2720 (2008). [CrossRef] [PubMed]
  6. M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, H. P. Urbach, and J. J. M. Braat, “High-accuracy long-distance measurements in air with a frequency comb laser,” Opt. Lett. 34(13), 1982–1984 (2009). [CrossRef] [PubMed]
  7. K. N. Joo and S. W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14(13), 5954–5960 (2006). [CrossRef] [PubMed]
  8. M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express 19(7), 6549–6562 (2011). [CrossRef] [PubMed]
  9. P. Balling, P. Kren, P. Masika, and S. A. van den Berg, “Femtosecond frequency comb based distance measurement in air,” Opt. Express 17(11), 9300–9313 (2009). [CrossRef] [PubMed]
  10. K. N. Joo, Y. Kim, and S. W. Kim, “Distance measurements by combined method based on a femtosecond pulse laser,” Opt. Express 16(24), 19799–19806 (2008). [CrossRef] [PubMed]
  11. S. Yokoyama, T. Yokoyama, Y. Hagihara, T. Araki, and T. Yasui, “A distance meter using a terahertz intermode beat in an optical frequency comb,” Opt. Express 17(20), 17324–17337 (2009). [CrossRef] [PubMed]
  12. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009). [CrossRef]
  13. J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010). [CrossRef]
  14. H. Y. Xia and C. X. Zhang, “Ultrafast and Doppler-free femtosecondoptical ranging based on dispersivefrequency-modulated interferometry,” Opt. Express 18(5), 4118–4129 (2010). [CrossRef] [PubMed]
  15. M. Godbout, J. D. Deschênes, and J. Genest, “Spectrally resolved laser ranging with frequency combs,” Opt. Express 18(15), 15981–15989 (2010). [CrossRef] [PubMed]
  16. N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010). [CrossRef]
  17. F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29(13), 1542–1544 (2004). [CrossRef] [PubMed]
  18. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008). [CrossRef] [PubMed]
  19. P. Giaccari, J. D. Deschênes, P. Saucier, J. Genest, and P. Tremblay, “Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method,” Opt. Express 16(6), 4347–4365 (2008). [CrossRef] [PubMed]
  20. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010). [CrossRef]
  21. J. D. Deschênes, P. Giaccarri, and J. Genest, “Optical referencing technique with CW lasers as intermediate oscillators for continuous full delay range frequency comb interferometry,” Opt. Express 18(22), 23358–23370 (2010). [CrossRef] [PubMed]
  22. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34(14), 2153–2155 (2009). [CrossRef] [PubMed]
  23. G. Taurand, P. Giaccari, J. D. Deschênes, and J. Genest, “Time-domain optical reflectometry measurements using a frequency comb interferometer,” Appl. Opt. 49(23), 4413–4419 (2010). [CrossRef] [PubMed]
  24. M. Jiang, G. Sucha, M. E. Fermann, J. Jimenez, D. Harter, M. Dagenais, S. Fox, and Y. Hu, “Nonlinearly limited saturable-absorber mode locking of an erbium fiber laser,” Opt. Lett. 24(15), 1074–1076 (1999). [CrossRef] [PubMed]
  25. M. Guina, N. Xiang, and O. G. Okhotnikov, “Stretched-pulse fiber lasers based on semiconductor saturable absorbers,” Appl. Phys. B 74(9), S193–S200 (2002). [CrossRef]
  26. I. Hartl, G. Imeshev, M. E. Fermann, C. Langrock, and M. M. Fejer, “Integrated self-referenced frequency-comb laser based on a combination of fiber and waveguide technology,” Opt. Express 13(17), 6490–6496 (2005). [CrossRef] [PubMed]
  27. J. J. McFerran, L. Nenadovic, W. C. Swann, J. B. Schlager, and N. R. Newbury, “A passively mode-locked fiber laser at 1.54 mum with a fundamental repetition frequency reaching 2 GHz,” Opt. Express 15(20), 13155–13166 (2007). [CrossRef] [PubMed]
  28. H. Byun, D. Pudo, J. Chen, E. P. Ippen, and F. X. Kärtner, “High-repetition-rate, 491 MHz, femtosecond fiber laser with low timing jitter,” Opt. Lett. 33(19), 2221–2223 (2008). [CrossRef] [PubMed]
  29. Batop sam-1550–6-x-2ps. (The use of product names is necessary to specify the experimental results adequately and does not imply endorsement by the National Institute of Standards and Technology.)
  30. J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, “Elimination of pump-induced frequency jitter on fiber-laser frequency combs,” Opt. Lett. 31(13), 1997–1999 (2006). [CrossRef] [PubMed]
  31. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010). [CrossRef]
  32. The detector and digitizer used are a thorlabs PDB110C and a Gage CS14200. (The use of product names is necessary to specify the experimental results adequately and does not imply endorsement by the National Institute of Standards and Technology.)
  33. N. R. Newbury, I. Coddington, and W. C. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18(8), 7929–7945 (2010). [CrossRef] [PubMed]
  34. P. E. Ciddor and R. J. Hill, “Refractive index of air. 2. Group index,” Appl. Opt. 38(9), 1663–1667 (1999). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited