OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 19 — Sep. 12, 2011
  • pp: 18510–18515

Weak avalanche discrimination for gated-mode single-photon avalanche photodiodes

Seok-Beom Cho and Sae-Kyoung Kang  »View Author Affiliations


Optics Express, Vol. 19, Issue 19, pp. 18510-18515 (2011)
http://dx.doi.org/10.1364/OE.19.018510


View Full Text Article

Enhanced HTML    Acrobat PDF (723 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The after-pulsing effect is a common problem that needs to be overcome for high-speed single-photon detection based on gated-mode single-photon avalanche photodiodes (SPADs). This paper presents a simple and practical method for suppression of the after-pulsing probability using an auxiliary signal to discriminate quite weak avalanches. The detection efficiency and after-pulse probability of an InGaAs/InP SPAD are investigated with a 10 MHz gating for conventional and proposed methods, and a sharp decrease of after-pulse probability is demonstrated with the application of the proposed method. At a gating frequency of 100 MHz, a detection efficiency of 10.4% is achieved with an after-pulse probability of 5.6% without dead time.

© 2011 OSA

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(040.1345) Detectors : Avalanche photodiodes (APDs)

ToC Category:
Detectors

History
Original Manuscript: June 29, 2011
Revised Manuscript: August 23, 2011
Manuscript Accepted: August 31, 2011
Published: September 7, 2011

Citation
Seok-Beom Cho and Sae-Kyoung Kang, "Weak avalanche discrimination for gated-mode single-photon avalanche photodiodes," Opt. Express 19, 18510-18515 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-19-18510


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt.35(12), 1956–1976 (1996). [CrossRef] [PubMed]
  2. A. Lacaita, F. Zappa, S. Cova, and P. Lovati, “Single-photon detection beyond 1 µm: performance of commercially available InGaAs/lnP detectors,” Appl. Opt.35(16), 2986–2996 (1996). [CrossRef] [PubMed]
  3. D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs,” J. Mod. Opt.48(13), 1967–1981 (2001). [CrossRef]
  4. N. Namekata, Y. Makino, and S. Inoue, “Single-photon detector for long-distance fiber-optic quantum key distribution,” Opt. Lett.27(11), 954–956 (2002). [CrossRef] [PubMed]
  5. M. Liu, C. Hu, J. C. Campbell, Z. Pan, and M. M. Tashima, “Reduce after-pulsing of single-photon avalanche diodes using passive quenching with active reset,” IEEE J. Quantum Electron.44(5), 430–434 (2008). [CrossRef]
  6. N. Namekata, S. Sasamori, and S. Inoue, “800 MHz single-photon detection at 1550 nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating,” Opt. Express14(21), 10043–10049 (2006). [CrossRef] [PubMed]
  7. Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High-speed single-photon detection in the near infrared,” Appl. Phys. Lett.91(4), 041114 (2007). [CrossRef]
  8. J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast-gate rate ingaas/inp single-photon avalanche photodiodes,” Appl. Phys. Lett.95(9), 091103 (2009). [CrossRef]
  9. N. Namekata, S. Adachi, and S. Inoue, “1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode,” Opt. Express17(8), 6275–6282 (2009). [CrossRef] [PubMed]
  10. A. R. Dixon, J. F. Dynes, Z. L. Yuan, A. W. Sharpe, A. J. Bennett, and A. J. Shields, “Ultrashort dead time of photon-counting InGaAs avalanche photodiodes,” Appl. Phys. Lett.94(23), 231113 (2009). [CrossRef]
  11. Z. L. Yuan, A. W. Sharpe, J. F. Dynes, A. R. Dixon, and A. J. Shields, “Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes,” Appl. Phys. Lett.96(7), 071101 (2010). [CrossRef]
  12. N. Namekata, G. Fujii, S. Inoue, T. Honjo, and H. Takesue, “Differential phase shift quantum key distribution using single-photon detectors based on a sinusoidally gated InGaAs/InP avalanche photodiodes,” Appl. Phys. Lett.91(1), 011112 (2007). [CrossRef]
  13. Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett.92(20), 201104 (2008). [CrossRef]
  14. A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate,” Opt. Express16(23), 18790–18797 (2008). [CrossRef] [PubMed]
  15. B. E. Kardynał, Z. L. Yuan, and A. J. Shields, “An avalanche-photodiode-based photon-number-resolving detector,” Nat. Photonics2(7), 425–428 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited