OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 19 — Sep. 12, 2011
  • pp: 18529–18542

Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities

Qimin Quan and Marko Loncar  »View Author Affiliations


Optics Express, Vol. 19, Issue 19, pp. 18529-18542 (2011)
http://dx.doi.org/10.1364/OE.19.018529


View Full Text Article

Enhanced HTML    Acrobat PDF (1272 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photonic crystal nanobeam cavities are versatile platforms of interest for optical communications, optomechanics, optofluidics, cavity QED, etc. In a previous work [Appl. Phys. Lett. 96, 203102 (2010)], we proposed a deterministic method to achieve ultrahigh Q cavities. This follow-up work provides systematic analysis and verifications of the deterministic design recipe and further extends the discussion to air-mode cavities. We demonstrate designs of dielectric-mode and air-mode cavities with Q > 109, as well as dielectric-mode nanobeam cavities with both ultrahigh-Q (> 107) and ultrahigh on-resonance transmissions (T > 95%).

© 2011 OSA

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(230.5298) Optical devices : Photonic crystals
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Photonic Crystals

History
Original Manuscript: May 23, 2011
Revised Manuscript: August 8, 2011
Manuscript Accepted: August 18, 2011
Published: September 8, 2011

Citation
Qimin Quan and Marko Loncar, "Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities," Opt. Express 19, 18529-18542 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-19-18529


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Quality factor is defined as Q=ω0Energy storedPower loss, and mode volume is defined as V = ∫ dVɛ|E|2/[ɛ|E|2]max.
  2. K. J. Vahala, “Optical microcavities,” Nature424, 839–846 (2003). [CrossRef] [PubMed]
  3. J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics3, 687–695 (2009). [CrossRef]
  4. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics4, 535–544 (2010). [CrossRef]
  5. M. Eichenfield, J. Chan, R. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature462, 78–82 (2009). [CrossRef] [PubMed]
  6. D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics4, 211–217 (2010). [CrossRef]
  7. D. G. Grier, “A revolution in optical manipulationm,” Nature424, 21–27 (2003). [CrossRef]
  8. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442, 381–386 (2006). [CrossRef] [PubMed]
  9. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58, 2059–2062 (1987). [CrossRef] [PubMed]
  10. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58, 2486 (1987). [CrossRef] [PubMed]
  11. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390, 143–145 (1997). [CrossRef]
  12. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science284, 1819–1821 (1999). [CrossRef] [PubMed]
  13. J. Ctyroky, “Photonic bandgap structures in planar waveguides,” J. Opt. Soc. Am. A18, 435–441 (2001). [CrossRef]
  14. M. R. Watts, S. G. Johnson, H. A. Haus, and J. D. Joannopoulos, “Electromagnetic cavity with arbitrary Q and small modal volume without a complete photonic bandgap,” Opt. Lett.27, 1785–1787 (2002). [CrossRef]
  15. J. M. Geremia, J. Williams, and H. Mabuchi, “Inverse-problem approach to designing photonic crystals for cavity QED experiments,” Phys. Rev. E66, 066606 (2002). [CrossRef]
  16. M. Burger, S. J Osher, and E. Yablonovitch, “Inverse problem techniques for the design of photonic crystals,” IEICE Trans. Electron.E87C, 258–265 (2004).
  17. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425, 944–947 (2003). [CrossRef] [PubMed]
  18. B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater.4, 207–210 (2005). [CrossRef]
  19. S. Tomljenovic-Hanic, C. M. de Sterke, and M. J. Steel, “Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration,” Opt. Express14, 12451–12456 (2006). [CrossRef] [PubMed]
  20. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett.88, 041112 (2006). [CrossRef]
  21. K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express15, 7506–7514 (2007). [CrossRef] [PubMed]
  22. Y. Tanaka, T. Asano, and S. Noda, “Design of photonic crystal nanocavity with Q-factor of ∼109,” J. Lightwave Technol.26, 1532 (2008). [CrossRef]
  23. M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q nanocavity with 1D Photonic Gap,” Opt. Express, 16, 11095 (2008). [CrossRef] [PubMed]
  24. P. Velha, E. Picard, T. Charvolin, E. Hadji, J. C. Rodier, P. Lalanne, and E. Peyrage, “Ultra-high Q/V Fabry-Perot microcavity on SOI substrate,” Opt. Express15, 16090–16096 (2007). [CrossRef] [PubMed]
  25. S. Reitzenstein, C. Hofmann, A. Gorbunov, M Strauß, S. H. Kwon, C. Schneider, A. Loffler, S. Hofling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150000,” Appl. Phys. Lett.90, 251109 (2007). [CrossRef]
  26. A. R. Md Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire microcavities in silicon-on-insulator (SOI),” Opt. Express16, 12084 (2008). [CrossRef]
  27. Y. Zhang and M. Loncar, “Ultra-high quality factor optical resonators based on semiconductor nanowires.” Opt. Express16, 17400–17409 (2008). [CrossRef] [PubMed]
  28. M. W. McCutcheon and M. Loncar, “Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express16, 19136–19145 (2008). [CrossRef]
  29. L. D. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, “Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity,” Opt. Express17, 21008–21117 (2009). [CrossRef]
  30. J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity”, Opt. Express17, 3802–3817 (2009). [CrossRef] [PubMed]
  31. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94, 121106 (2009). [CrossRef]
  32. Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett.96, 203102 (2010). [CrossRef]
  33. E. Kuraamochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y-G. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express18, 15859–15869 (2010). [CrossRef]
  34. Q. Quan, I. B. Burgess, S. K. Y. Tang, D. L. Floyd, and M. Loncar, “High-Q/V photonic crystal nanobeam cavities in an ultra-low index-contrast polymeric optofluidic platform,” arXiv:1108.2669 (2010).
  35. J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Optimization of the Q factor in photonic crystal microcavities,” IEEE J. Quantum Electron.38, 850–856 (2002). [CrossRef]
  36. K. Srinivasan and O. Painter, “Momentum space design of high-Q photonic crystal optical cavities,” Opt. Express10, 670–684 (2002). [PubMed]
  37. D. Englund, I. Fushman, and J. Vuckovic, “General recipe for designing photonic crystal cavities,” Opt. Express13, 5961–5975 (2005). [CrossRef] [PubMed]
  38. M. Palamaru and P. Lalanne, “Photonic crystal waveguides: Out-of-plane losses and adiabatic modal conversion,” Appl. Phys. Lett.78, 1466–1468 (2001). [CrossRef]
  39. P. Lalanne, S. Mias, and J. P. Hugonin, “Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities,” Opt. Express12, 458–467 (2004). [CrossRef] [PubMed]
  40. K. Sakoda, Optical Properties of Photonic Crystals, 2nd Ed. (Springer, 2005).
  41. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd Ed. (Cambridge University Press, 2007).
  42. S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisbergs, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E65, 066611 (2002). [CrossRef]
  43. J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Optimization of three-dimensional micropost microcavities for cavity quantum electrodynamics,” Phys. Rev. E65, 016608 (2001).
  44. B. H. Ahn, J. H. Kang, M. K. Kim, J. H. Song, B. Min, K. S. Kim, and Y. H. Lee, “One-dimensional parabolic-beam photonic crystal laser,” Opt. Express18, 5654–5660 (2010). [CrossRef] [PubMed]
  45. D. W. Vernooy, A. Furusawa, N. P. Georgiades, V. S. Ilchenko, and H. J. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A57, R2293–R2296 (1998). [CrossRef]
  46. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421, 925–928 (2003). [CrossRef] [PubMed]
  47. M. Soltani, S. Yegnanarayanan, and A. Adibi, “Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics,” Opt. Express15, 4694–4704 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited