OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 19 — Sep. 12, 2011
  • pp: 18543–18557

Tailored optical force fields using evolutionary algorithms

Colin C. Olson, Ross T. Schermer, and Frank Bucholtz  »View Author Affiliations


Optics Express, Vol. 19, Issue 19, pp. 18543-18557 (2011)
http://dx.doi.org/10.1364/OE.19.018543


View Full Text Article

Enhanced HTML    Acrobat PDF (9654 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce a method whereby the electromagnetic field that governs the force on a Rayleigh particle can be tailored such that the resultant force field conforms to a desired geometry. The electromagnetic field is expanded as a set of vector spherical wavefunctions (VSWFs) that describe the field over all space. Given the incident field, the resultant force on a given Rayleigh particle can be calculated throughout a volume of interest. We use an evolutionary algorithm (EA) to search the space of coefficients governing the VSWFs for those that produce the desired force field. We demonstrate how Maxwell’s equations will support an “optical tunnel” that guides particles to a trap location while at the same time preventing particles outside the tunnel from approaching the trap. This result is of interest because the field is impressed throughout the domain; that is to say, once the field is generated, no additional control is required to guide the particles.

© 2011 OSA

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(140.7010) Lasers and laser optics : Laser trapping
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: May 23, 2011
Revised Manuscript: July 19, 2011
Manuscript Accepted: July 19, 2011
Published: September 8, 2011

Virtual Issues
Vol. 6, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Colin C. Olson, Ross T. Schermer, and Frank Bucholtz, "Tailored optical force fields using evolutionary algorithms," Opt. Express 19, 18543-18557 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-19-18543


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef] [PubMed]
  2. D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light forces the pace: optical manipulation for biophotonics,” J. Biomed. Opt. 15, 041503 (2010). [CrossRef] [PubMed]
  3. A. Jonáš and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29, 4813–4851 (2008). [CrossRef]
  4. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003). [CrossRef] [PubMed]
  5. D. L. Andrews, Structured Light and Its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces (Elsevier, 2008). [PubMed]
  6. P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Four-dimensional optical manipulation of colloidal particles,” App. Phys. Lett. 86, 074103 (2005). [CrossRef]
  7. T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” App. Phys. Lett. 86, 174101 (2005). [CrossRef]
  8. V. Garcés-Chávez, K. Dholakia, and G. C. Spalding, “Extended-area optically induced organization of microparticies on a surface,” App. Phys. Lett. 86, 031106 (2005). [CrossRef]
  9. J. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002). [CrossRef]
  10. J. B. Wills, J. R. Butler, J. Palmer, and J. P. Reid, “Using optical landscapes to control, direct, and isolate aerosol particles,” Phys. Chem. Chem. Phys. 11, 8015–8020 (2009). [CrossRef] [PubMed]
  11. J. Liesner, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77–82 (2000). [CrossRef]
  12. J. Leach, G. Sinclair, P. Jordan, J. Courtial, M. Padgett, J. Cooper, and Z. Laczik, “3D manipulation of particles into crystal structures using holographic optical tweezers,” Opt. Express 12, 220–226 (2004). [CrossRef] [PubMed]
  13. T. Čižmár, L. C. Dávila Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. B 43, 102001 (2010). [CrossRef]
  14. K. T. Gahagan and G. A. Swartzlander, “Optical vortex trapping of particles,” Opt. Lett. 21, 827–829 (1996). [CrossRef] [PubMed]
  15. J. Arlt, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001). [CrossRef]
  16. V. Garcés-Chávez, D. McGloin, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002). [CrossRef] [PubMed]
  17. J. Arlt and M. J. Padgett, “Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam,” Opt. Lett. 25, 191–193 (2000). [CrossRef]
  18. A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, and M. W. Berns, “Interferometric optical tweezers,” Opt. Commun. 133, 7–10 (1997). [CrossRef]
  19. P. C. Morgensen and J. Glückstad, “Dynamic array generation and pattern formation for optical tweezers,” Opt. Commun. 175, 75–81 (2000). [CrossRef]
  20. E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69, 1974–1977 (1998). [CrossRef]
  21. M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24, 608–610 (1999). [CrossRef]
  22. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Optical trapping of a metal-particle and a water droplet by a scanning laser-beam,” App. Phys. Lett. 60, 807–809 (1992). [CrossRef]
  23. C. Mio, T. Gong, A. Terray, and D. W. M. Marr, “Design of a scanning laser optical trap for multiparticle manipulation,” Rev. Sci. Instrum. 71, 2196–2200 (2000). [CrossRef]
  24. K. Visscher, S. P. Gross, and S. M. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quantum Electron. 2, 1066–1075 (1996). [CrossRef]
  25. M. T. Valentine, N. R. Guydosh, B. Gutiérrez-Medina, A. N. Fehr, J. O. Andreasson, and S. M. Block, “Precision steering of an optical trap by electro-optic deflection,” Opt. Commun. 33, 599–601 (2008).
  26. R. Piestun, B. Spektor, and J. Shamir, “Wave fields in three dimensions: analysis and synthesis,” J. Opt. Soc. Am. A 13, 1837–1848 (1996). [CrossRef]
  27. R. Piestun, B. Spektor, and J. Shamir, “Unconventional light distributions in three-dimensional domains,” J. Mod. Opt. 43, 1495–1507 (1996). [CrossRef]
  28. G. Shabtay, “Three-dimensional beam forming and Ewald’s surfaces,” Opt. Commun. 226, 33–37 (2003). [CrossRef]
  29. G. Whyte and J. Courtial, “Experimental demonstration of holographic three-dimensional light shaping using a Gerchberg–Saxton algorithm,” New J. Phys. 7, 117 (2005). [CrossRef]
  30. O. Moine and B. Stout, “Optical force calculations in arbitrary beams by use of the vector addition theorem,” J. Opt. Soc. Am. B 22, 1620–1631 (2005). [CrossRef]
  31. J. D. Jackson, Classical Electrodynamics (Wiley, 1999).
  32. L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing (Wiley, 1985).
  33. T. A. Nieminen, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Multipole expansion of strongly focussed laser beams,” J. Quant. Spectrosc. Radiat. Transf. 79–80, 1005–1017 (2003). [CrossRef]
  34. Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996). [CrossRef]
  35. S. H. Simpson and S. Hanna, “Rotation of absorbing spheres in Laguerre–Gaussian beams,” J. Opt. Soc. Am. A 26, 173–183 (2009). [CrossRef]
  36. G. Gouesebet, J. A. Locke, and G. Gréhan, “Partial-wave representations of laser beams for use in light-scattering calculations,” Appl. Opt. 34, 2133–2143 (1995). [CrossRef]
  37. L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19, 1177–1179 (1979). [CrossRef]
  38. R. Storn and R. Price, “Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces,” J. Global Optim. 11, 341–359 (1997). [CrossRef]
  39. R. Piestun and J. Shamir, “Control of wave-front propagation with diffractive elements,” Opt. Lett. 19, 771–773 (1994). [CrossRef] [PubMed]
  40. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  41. G. C. Spalding, J. Courtial, and R. Di Leonardo “Holographic Optical Tweezers,” in Structured Light and Its Applications , D. L. Andrews, ed. (Elsevier, 2008), Chap. 6. [CrossRef]
  42. M. A. Seldowitz, J. P. Allebach, and D. W. Sweeney, “Synthesis of digital holograms by direct binary search,” Appl. Opt. 26, 2788–2798 (1987). [CrossRef] [PubMed]
  43. C. H. Choi, J. Ivanic, M. S. Gordon, and K. Ruedenberg, “Rapid and stable determination of rotation matrices between spherical harmonics by direct recursion,” J. Chem. Phys. 111, 8825–8831 (1999). [CrossRef]
  44. G. Videen, “Light Scattering from a Sphere Near a Plane Surface,” in Light Scattering from Microstructures, Lecture Notes in Physics Volume 534 , F. Moreno and F. González, eds. (Springer, 2000), Chapter 5. [CrossRef]
  45. T. A. Nieminen, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Calculation of the T-matrix: general considerations and application of the point-matching method,” J. Quant. Spectrosc. Radiat. Transf. 79–80, 1019–1029 (2003). [CrossRef]
  46. T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9, S196–S203 (2007). [CrossRef]
  47. B. Sun, Y. Roichman, and D. G. Grier, “Theory of holographic optical trapping,” Opt. Express 16, 15765–15776 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited