OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 19 — Sep. 12, 2011
  • pp: 18558–18576

Dipole radiation within one-dimensional anisotropic microcavities: a simulation method

Lieven Penninck, Patrick De Visschere, Jeroen Beeckman, and Kristiaan Neyts  »View Author Affiliations


Optics Express, Vol. 19, Issue 19, pp. 18558-18576 (2011)
http://dx.doi.org/10.1364/OE.19.018558


View Full Text Article

Enhanced HTML    Acrobat PDF (1841 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a simulation method for light emitted in uniaxially anisotropic light-emitting thin film devices. The simulation is based on the radiation of dipole antennas inside a one-dimensional microcavity. Any layer in the microcaviy can be uniaxially anisotropic with an arbitrary orientation of the optical axis. A plane wave expansion for the field of an elementary dipole inside an anisotropic medium is derived from Maxwell’s equations. We employ the scattering matrix method to calculate the emission by dipoles inside an anisotropic microcavity. The simulation method is applied to calculate the emission of dipole antennas in a number of cases: a dipole antenna in an infinite medium, emission into anisotropic slab waveguides and waveguides in liquid crystals. The dependency of the intensity and the polarization on the direction of emission is illustrated for a number of anisotropic microcavities.

© 2011 OSA

OCIS Codes
(230.7390) Optical devices : Waveguides, planar
(260.1440) Physical optics : Birefringence
(260.2110) Physical optics : Electromagnetic optics
(310.0310) Thin films : Thin films

ToC Category:
Physical Optics

History
Original Manuscript: June 15, 2011
Revised Manuscript: July 22, 2011
Manuscript Accepted: July 22, 2011
Published: September 8, 2011

Citation
Lieven Penninck, Patrick De Visschere, Jeroen Beeckman, and Kristiaan Neyts, "Dipole radiation within one-dimensional anisotropic microcavities: a simulation method," Opt. Express 19, 18558-18576 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-19-18558


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. M. Bennett, “Polarizers,” in Handbook of Optics, M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, eds. (McGraw-Hill, 1995), pp. 3.1–3.70.
  2. H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics4(10), 676–685 (2010). [CrossRef]
  3. C. L. Mulder, P. D. Reusswig, A. M. Velázquez, H. Kim, C. Rotschild, and M. A. Baldo, “Dye alignment in luminescent solar concentrators: I. Vertical alignment for improved waveguide coupling,” Opt. Express18(S1), A79–A90 (2010). [CrossRef] [PubMed]
  4. W. De Cort, J. Beeckman, R. James, F. A. Fernández, R. Baets, and K. Neyts, “Tuning of silicon-on-insulator ring resonators with liquid crystal cladding using the longitudinal field component,” Opt. Lett.34(13), 2054–2056 (2009). [CrossRef] [PubMed]
  5. K. Driesen, D. Moors, J. Beeckman, K. Neyts, C. Gorller-Walrand, and K. Binnemans, “Near-infrared luminescence emitted by an electrically switched liquid crystal cell,” J. Lumin.127(2), 611–615 (2007). [CrossRef]
  6. M. O'Neill and S. M. Kelly, “Liquid crystals for charge transport, luminescence, and photonics,” Adv. Mater. (Deerfield Beach Fla.)15(14), 1135–1146 (2003). [CrossRef]
  7. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature459(7244), 234–238 (2009). [CrossRef] [PubMed]
  8. T. Suzuki, “Flat panel displays for ubiquitous product applications and related impurity doping technologies,” J. Appl. Phys.99(11), 111101 (2006). [CrossRef]
  9. W. M. V. Wan, R. H. Friend, and N. C. Greenham, “Modelling of interference effects in anisotropic conjugated polymer devices,” Thin Solid Films363(1-2), 310–313 (2000). [CrossRef]
  10. D. Yokoyama, A. Sakaguchi, M. Suzuki, and C. Adachi, “Horizontal orientation of linear-shaped organic molecules having bulky substituents in neat and doped vacuum-deposited amorphous films,” Org. Electron.10(1), 127–137 (2009). [CrossRef]
  11. M. P. Aldred, A. E. A. Contoret, S. R. Farrar, S. M. Kelly, D. Mathieson, M. O'Neill, W. C. Tsoi, and P. Vlachos, “A full-color electroluminescent device and patterned photoalignment using light-emitting liquid crystals,” Adv. Mater. (Deerfield Beach Fla.)17(11), 1368–1372 (2005). [CrossRef]
  12. W. Lukosz, “Theory of optical-environment-dependent spontaneous-emission rates for emitters in thin-layers,” Phys. Rev. B22(6), 3030–3038 (1980). [CrossRef]
  13. K. Neyts, “Simulation of light emission from thin-film microcavities,” J. Opt. Soc. Am. A15(4), 962–971 (1998). [CrossRef]
  14. J. A. E. Wasey, A. Safonov, I. D. W. Samuel, and W. L. Barnes, “Effects of dipole orientation and birefringence on the optical emission from thin films,” Opt. Commun.183(1-4), 109–121 (2000). [CrossRef]
  15. P. Bermel, E. Lidorikis, Y. Fink, and J. D. Joannopoulos, “Active materials embedded in photonic crystals and coupled to electromagnetic radiation,” Phys. Rev. B73(16), 165125 (2006). [CrossRef]
  16. P. Bienstman, P. Vandersteegen, and R. Baets, “Modelling gratings on either side of the substrate for light extraction in light-emitting diodes,” Opt. Quantum Electron.39(10-11), 797–804 (2007). [CrossRef]
  17. W. Lukosz, “Light-emission by multipole sources in thin-layers. 1. Radiation-patterns of electric and magnetic dipoles,” J. Opt. Soc. Am.71(6), 744–754 (1981). [CrossRef]
  18. P. De Visschere, “Electromagnetic source transformations and scalarization in stratified gyrotropic media,” Prog. Electromag. Res. B18, 165–183 (2009). [CrossRef]
  19. P. C. Clemmow, “The theory of electromagnetic waves in a simple anisotropic medium,” Electr. Engin. Proc. Inst.110, 101–106 (1963). [CrossRef]
  20. P. Bermel, J. D. Joannopoulos, Y. Fink, P. A. Lane, and C. Tapalian, “Properties of radiating pointlike sources in cylindrical omnidirectionally reflecting waveguides,” Phys. Rev. B69(3), 035316 (2004). [CrossRef]
  21. T. Setälä, M. Kaivola, and A. Friberg, “Decomposition of the point-dipole field into homogeneous and evanescent parts,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics59(1), 1200–1206 (1999). [CrossRef]
  22. D. Y. K. Ko and J. R. Sambles, “Scattering matrix-method for propagation of radiation in stratified media - attenuated total reflection studies of liquid-crystals,” J. Opt. Soc. Am. A5(11), 1863–1866 (1988). [CrossRef]
  23. D. W. Berreman, “Optics in stratified and anisotropic media - 4x4 matrix formulation,” J. Opt. Soc. Am.62(4), 502–510 (1972). [CrossRef]
  24. J. Beeckman, K. Neyts, and M. Haelterman, “Patterned electrode steering of nematicons,” J. Opt. A, Pure Appl. Opt.8(2), 214–220 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited