OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 19 — Sep. 12, 2011
  • pp: 18577–18583

193nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing

Yang Ran, Yan-Nan Tan, Li-Peng Sun, Shuai Gao, Jie Li, Long Jin, and Bai-Ou Guan  »View Author Affiliations

Optics Express, Vol. 19, Issue 19, pp. 18577-18583 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2547 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the inscription of fiber Bragg gratings by 193 nm ArF excimer laser in microfibers drawn from the standard single mode telecommunication fiber. Fiber Bragg gratings are directly inscribed in a series of microfibers with diameter ranged from tens of μm to 3.3 μm without hydrogen loading or other treatment to photosensitize the microfibers. Four reflection peaks are observed where three correspond to high order mode resonances. The resonance wavelength depends on the fiber diameter and it sharply blueshifts as the diameter is decreased below 10 μm. The gratings are characterized for their response to ambient refractive index. The higher order mode resonance exhibits higher sensitivity to refractive index.

© 2011 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(230.3990) Optical devices : Micro-optical devices
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: June 21, 2011
Revised Manuscript: August 30, 2011
Manuscript Accepted: August 30, 2011
Published: September 8, 2011

Yang Ran, Yan-Nan Tan, Li-Peng Sun, Shuai Gao, Jie Li, Long Jin, and Bai-Ou Guan, "193nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing," Opt. Express 19, 18577-18583 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004). [CrossRef] [PubMed]
  2. L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5(2), 259–262 (2005). [CrossRef] [PubMed]
  3. J. Y. Lou, L. M. Tong, and Z. Z. Ye, “Dispersion shifts in optical nanowires with thin dielectric coatings,” Opt. Express 14(16), 6993–6998 (2006). [CrossRef] [PubMed]
  4. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003). [CrossRef] [PubMed]
  5. M. Sumetsky, “Uniform coil optical resonator and waveguide: transmission spectrum, eigenmodes, and dispersion relation,” Opt. Express 13(11), 4331–4340 (2005). [CrossRef] [PubMed]
  6. M. Sumetsky, Y. Dulashko, and A. Hale, “Fabrication and study of bent and coiled free silica nanowires: Self-coupling microloop optical interferometer,” Opt. Express 12(15), 3521–3531 (2004). [CrossRef] [PubMed]
  7. X. S. Jiang, Q. H. Song, L. Xu, J. Fu, and L. M. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90(23), 233501 (2007). [CrossRef]
  8. F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15(12), 7888–7893 (2007). [CrossRef] [PubMed]
  9. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005). [CrossRef]
  10. A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Refractive index sensor based on microstructured fiber Bragg grating,” IEEE Photon. Technol. Lett. 17(6), 1250–1252 (2005). [CrossRef]
  11. A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17(6), 1253–1255 (2005). [CrossRef]
  12. X. Z. Sang, C. X. Yu, T. Mayteevarunyoo, K. Wang, Q. Zhang, and P. L. Chu, “Temperature-insensitive chemical sensor based on a fiber Bragg grating,” Sens. Actuators B Chem. 120(2), 754–757 (2007). [CrossRef]
  13. A. N. Chryssis, S. S. Saini, S. M. Lee, H. Yi, W. E. Bentley, and M. Dagenais, “Detecting Hybridization of DNA by Highly Sensitive Evanescent Field Etched Core Fiber Bragg Grating Sensors,” Quantum Electron. 11(4), 864–872 (2005).
  14. X. Fang, C. R. Liao, and D. N. Wang, “Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing,” Opt. Lett. 35(7), 1007–1009 (2010). [CrossRef] [PubMed]
  15. Y. Zhang, B. Lin, S. C. Tjin, H. Zhang, G. H. Wang, P. Shum, and X. L. Zhang, “Refractive index sensing based on higher-order mode reflection of a microfiber Bragg grating,” Opt. Express 18(25), 26345–26350 (2010). [CrossRef] [PubMed]
  16. G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterisation,” Electron. Lett. 42(9), 517–518 (2006). [CrossRef]
  17. F. Bilodeau, B. Malo, J. Albert, D. C. Johnson, K. O. Hill, Y. Hibino, M. Abe, and M. Kawachi, “Photosensitization of optical fiber and silica-on-silicon/silica waveguides,” Opt. Lett. 18(12), 953–955 (1993). [CrossRef] [PubMed]
  18. J. Albert, B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Theriault, “Comparison of one-photon and two-photon effects in the photosensitivity of germanium-doped silica optical fibers exposed to intense ArF excimer laser pulses,” Appl. Phys. Lett. 67(24), 3529–3531 (1995). [CrossRef]
  19. J. Albert, M. Fokine, and W. Margulis, “Grating formation in pure silica-core fibers,” Opt. Lett. 27(10), 809–811 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited