OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 19 — Sep. 12, 2011
  • pp: 18593–18601

Demonstration of digital readout circuit for superconducting nanowire single photon detector

T. Ortlepp, M. Hofherr, L. Fritzsch, S. Engert, K. Ilin, D. Rall, H. Toepfer, H.-G. Meyer, and M. Siegel  »View Author Affiliations


Optics Express, Vol. 19, Issue 19, pp. 18593-18601 (2011)
http://dx.doi.org/10.1364/OE.19.018593


View Full Text Article

Enhanced HTML    Acrobat PDF (2867 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the transfer of single photon triggered electrical pulses from a superconducting nanowire single photon detector (SNSPD) to a single flux quantum (SFQ) pulse. We describe design and test of a digital SFQ based SNSPD readout circuit and demonstrate its correct operation. Both circuits (SNSPD and SFQ) operate under the same cryogenic conditions and are directly connected by wire bonds. A future integration of the present multi-chip configuration seems feasible because both fabrication process and materials are very similar. In contrast to commonly used semiconductor amplifiers, SFQ circuits combine very low power dissipation (a few microwatts) with very high operation speed, thus enabling count-rates of several gigahertz. The SFQ interface circuit simplifies the SNSPD readout and enables large numbers of detectors for future compact multi-pixel systems with single photon counting resolution. The demonstrated circuit has great potential for scaling the present interface solution to 1,000 detectors by using a single SFQ chip.

© 2011 OSA

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5570) Quantum optics : Quantum detectors

ToC Category:
Quantum Optics

History
Original Manuscript: June 23, 2011
Revised Manuscript: August 18, 2011
Manuscript Accepted: August 23, 2011
Published: September 8, 2011

Citation
T. Ortlepp, M. Hofherr, L. Fritzsch, S. Engert, K. Ilin, D. Rall, H. Toepfer, H.-G. Meyer, and M. Siegel, "Demonstration of digital readout circuit for superconducting nanowire single photon detector," Opt. Express 19, 18593-18601 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-19-18593


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics3, 696–705 (2009). [CrossRef]
  2. G. Gol’utsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79, 705–707 (2001). [CrossRef]
  3. R. Hadfield, M. Stevens, S. Gruber, A. Miller, R. Schwall, R. Mirin, and S. Nam, “Single photon source characterization with a superconducting single photon detector,” Opt. Express13, 10846–10853 (2005). [CrossRef] [PubMed]
  4. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409, 46–52 (2001). [CrossRef] [PubMed]
  5. S. Christoph, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett.98, 190503 (2007). [CrossRef]
  6. H. Takesue, S. Nam, Q. Zhang, R. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics1, 343–348 (2007). [CrossRef]
  7. A. Semenov, P. Haas, H.-W. Hubers, K. Ilin, M. Siegel, A. Kirste, D. Drung, T. Schurig, and A. Engel, “Intrinsic quantum efficiency and electro-thermal model of a superconducting nanowire single-photon detector,” J. Mod. Opt.56, 345–351 (2009). [CrossRef]
  8. L. Jiang, E. Dauler, and J. Chang, “Photon-number-resolving detector with 10 bits of resolution,” Phys. Rev. A75, 062325 (2007). [CrossRef]
  9. M. Freebody, “Superconductors strengthen single-photon detectors,” Photonics Spectra45, 51–53 (2011).
  10. H. Terai, S. Miki, and Z. Wang, “Readout electronics using single-flux-quantum circuit technology for superconducting single-photon detector array,” IEEE Trans. Appl. Supercond.19, 350–353 (2009). [CrossRef]
  11. H. Terai, S. Miki, T. Yamashita, M. Kazumasa, and Z. Wang, “Demonstration of single-flux-quantum readout operation for superconducting single-photon detectors,” Appl. Phys. Lett.97, 112510 (2010). [CrossRef]
  12. M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H.-W. Huebers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys.108, 014507 (2010). [CrossRef]
  13. P. Bunyk, K. Likharev, and D. Zinoviev, “RSFQ logic/memory family: a new technology: physics and devices,” Int. J. High Speed Electron. Syst.11, 257–306 (2001). [CrossRef]
  14. F. Mattioli, R. Leoni, A. Gaggero, M. G. Castellano, F. Carelli, P. amd Marsili, and A. Fiore, “Electrical characterization of superconducting single-photon detectors,” J. Appl. Phys.101, 054302 (2007). [CrossRef]
  15. M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett.92, 241112 (2008). [CrossRef]
  16. T. Ortlepp, S. Wuensch, M. Schubert, P. Febvre, B. Ebert, J. Kunert, E. Crocoll, H.-G. Meyer, M. Siegel, and F. Uhlmann, “Superconductor-to-semiconductor interface circuit for high fata rates,” IEEE Trans. Appl. Super-cond.19, 28–34 (2009). [CrossRef]
  17. S. Anders, M. Blamire, F.-I. Buchholz, D. Crete, R. Cristino, P. Febvre, L. Fritzsch, A. Herr, E. Ili’chev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. ter Brake, H. Toepfer, J.-C. Villegier, A. Zagoskin, and A. Zorin, “European roadmap on superconducting electronics: status and perspectives,” Physica C470, 2079–2126 (2010). [CrossRef]
  18. A. Semenov, A. Engel, H.-W. Huebers, K. Ilin, and M. Siegel, “Spectral cut-off in the efficiency of the resistive state formation caused by absorption of a single-photon in current-carrying superconducting nano-strips,” Eur. Phys. J. B47, 495–501 (2005). [CrossRef]
  19. H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, H.-W. Huebers, and A. Semenov, “Current-assisted thermally activated flux liberation in ultrathin nanopatterned NbN superconducting meander structures,” Phys. Rev. B81, 024502 (2010). [CrossRef]
  20. H. Terai, Z. Wang, Y. Hashimoto, S. Yorozu, A. Fujimaki, and N. Yoshikawa, “Timing jitter measurement of single-flux-quantum pulse in Josephson transmission line,” Appl. Phys. Lett.84, 2133–2135 (2004). [CrossRef]
  21. T. Ortlepp and H. Uhlmann, “Noise induced timing jitter: a general restriction for high speed RSFQ devices,” IEEE Trans. Appl. Supercond.15, 344–347 (2005). [CrossRef]
  22. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Dzardanov, K. Smirnov, A. Semenov, B. Voronov, C. Williams, and R. Sobolewski, “Fabrication and properties of an ultrafast NbN hot-electron single-photon detector,” IEEE Trans. Appl. Supercond.11, 574–577 (2001). [CrossRef]
  23. T. Ortlepp, O. Wetzstein, S. Engert, J. Kunert, and H. Toepfer, “Reduced power consumption in superconducting electronics,” IEEE Trans. Appl. Supercond.21, 770–775 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited