OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 19 — Sep. 12, 2011
  • pp: 18614–18620

Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler

Daoxin Dai and John E Bowers  »View Author Affiliations

Optics Express, Vol. 19, Issue 19, pp. 18614-18620 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (889 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel ultra-short polarization beam splitter (PBS) based on a bent directional coupler is proposed by utilizing the evanescent coupling between two bent optical waveguides with different core widths. For the bent directional coupler, there is a significant phase-mismatch for TE polarization while the phase-matching condition is satisfied for TM polarization. Therefore, the TM polarized light can be coupled from the narrow input waveguide to the adjacent wide waveguide while the TE polarization goes through the coupling region without significant coupling. An ultra-short (<10μm-long) PBS is designed based on silicon-on-insulator nanowires and the length of the bent coupling region is as small as 4.5μm while the gap width is chosen as 200nm (large enough to simplify the fabrication). Numerical simulations show that the present PBS has a good fabrication tolerance for the variation of the waveguide width (more than ± 60nm) and a very broad band (~200nm) for an extinction ratio of >10dB.

© 2011 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(230.5440) Optical devices : Polarization-selective devices

ToC Category:
Integrated Optics

Original Manuscript: July 5, 2011
Revised Manuscript: July 21, 2011
Manuscript Accepted: July 25, 2011
Published: September 8, 2011

Daoxin Dai and John E Bowers, "Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler," Opt. Express 19, 18614-18620 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Barwicz, M. Watts, M. Popovic, P. Rakich, L. Socci, F. Kartner, E. Ippen, and H. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007). [CrossRef]
  2. J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. Woo, and S. Kim, and B. H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photon. Technol. Lett. 15(1), 72–74 (2003). [CrossRef]
  3. B. M. A. Rahman, N. Somasiri, C. Themistos, and K. T. V. Grattan, “Design of optical polarization splitters in a single-section deeply etched MMI waveguide,” Appl. Phys. B 73(5–6), 613–618 (2001). [CrossRef]
  4. A. Katigbak, J. F. Strother, and J. Lin, “Compact silicon slot waveguide polarization splitter,” Opt. Eng. 48(8), 080503 (2009). [CrossRef]
  5. B. K. Yang, S. Y. Shin, and D. M. Zhang, “Ultrashort polarization splitter using two-mode interference in silicon photonic wires,” IEEE Photon. Technol. Lett. 21(7), 432–434 (2009). [CrossRef]
  6. I. Kiyat, A. Aydinli, and N. Dagli, “A compact silicon-on-insulator polarization splitter,” IEEE Photon. Technol. Lett. 17(1), 100–102 (2005). [CrossRef]
  7. J. B. Xiao, X. Liu, and X. Sun, “Design of a compact polarization splitter in horizontal multiple-slotted waveguide structures,” Jpn. J. Appl. Phys. 47(5), 3748–3754 (2008). [CrossRef]
  8. X. G. Tu, S. S. N. Ang, A. B. Chew, J. Teng, and T. Mei, “An ultracompact directional coupler based on GaAs cross-slot waveguide,” IEEE Photon. Technol. Lett. 22(17), 1324–1326 (2010). [CrossRef]
  9. T. Yamazaki, H. Aono, J. Yamauchi, and H. Nakano, “Coupled waveguide polarization splitter with slightly different core widths,” J. Lightwave Technol. 26(21), 3528–3533 (2008). [CrossRef]
  10. Y. Yue, L. Zhang, J.-Y. Yang, R. G. Beausoleil, and A. E. Willner, “Silicon-on-insulator polarization splitter using two horizontally slotted waveguides,” Opt. Lett. 35(9), 1364–1366 (2010). [CrossRef] [PubMed]
  11. L. B. Soldano, A. H. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Groen, “Mach-Zehnder interferometer polarization splitter in InGaAsP-InP,” IEEE Photon. Technol. Lett. 6(3), 402–405 (1994). [CrossRef]
  12. T. K. Liang and H. K. Tsang, “Integrated PBS in high index contrast silicon-on-insulator waveguides,” IEEE Photon. Technol. Lett. 17(2), 393–395 (2005). [CrossRef]
  13. L. M. Augustin, R. Hanfoug, J. J. G. M. van der Tol, W. J. M. de Laat, and M. K. Smit, “A compact integrated polarization splitter/converter in InGaAsP-InP,” IEEE Photon. Technol. Lett. 19(17), 1286–1288 (2007). [CrossRef]
  14. D. Dai, Z. Wang, and J. E. Bowers, “Considerations for the design of asymmetrical Mach-Zehnder Interferometers used as polarization beam splitters on a sub-micron silicon-on-insulator platform,” J. Lightwave Technol. 29(12), 1808–1817 (2011). [CrossRef]
  15. Y. Shi, D. Dai, and S. He, “Proposal for an ultra-compact PBS based on a photonic crystal-assisted multimode interference coupler,” IEEE Photon. Technol. Lett. 19(11), 825–827 (2007). [CrossRef]
  16. X. Ao, L. Liu, W. Lech, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89(17), 171115 (2006). [CrossRef]
  17. J. Feng and Z. Zhou, “Polarization beam splitter using a binary blazed grating coupler,” Opt. Lett. 32(12), 1662–1664 (2007). [CrossRef] [PubMed]
  18. Y. Tang, D. Dai, and S. He, “Proposal for a grating waveguide serving as both a polarization splitter and an efficient coupler for silicon-on-insulator nanophotonic circuits,” IEEE Photon. Technol. Lett. 21(4), 242–244 (2009). [CrossRef]
  19. M. Okuno, A. Sugita, K. Jinguji, and M. Kawachi, “Birefringence control of silica waveguides on Si and its application to a polarization-beam splitter/switch,” J. Lightwave Technol. 12(4), 625–633 (1994). [CrossRef]
  20. F. Ghirardi, J. Brandon, M. Carre, A. Bruno, L. Meniganx, and A. Carenco, “Polarization splitter based on modal birefringence in InP/InGaAsP optical waveguides,” IEEE Photon. Technol. Lett. 5(9), 1047–1049 (1993). [CrossRef]
  21. D. Dai, Y. Shi, and S. He, “Characteristic analysis of nanosilicon rectangular waveguides for planar light-wave circuits of high integration,” Appl. Opt. 45(20), 4941–4946 (2006). [CrossRef] [PubMed]
  22. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and Confining Light in Void Nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004). [CrossRef] [PubMed]
  23. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express 14(25), 12401–12408 (2006). [CrossRef] [PubMed]
  24. M. A. Komatsu, K. Saitoh, and M. Koshiba, “Design of miniaturized silicon wire and slot waveguide polarization splitterbased on a resonant tunneling,” Opt. Express 17(21), 19225–19233 (2009). [CrossRef] [PubMed]
  25. S. Lin, J. Hu, and K. B. Crozier, “Ultracompact, broadband slot waveguide polarization splitter,” Appl. Phys. Lett. 98(15), 151101 (2011). [CrossRef]
  26. D. Dai, Z. Wang, and J. E. Bowers, “Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler,” Opt. Lett. 36(13), 2590–2592 (2011). [CrossRef] [PubMed]
  27. L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits,” Opt. Express 19(13), 12646–12651 (2011). [CrossRef] [PubMed]
  28. D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011). [CrossRef] [PubMed]
  29. M. K. Chin and S. T. Ho, “Design and modeling of waveguide-coupled single-mode microring resonators,” J. Lightwave Technol. 16(8), 1433–1446 (1998). [CrossRef]
  30. FIMMWAVE/FIMMPROP, Photon Design Ltd, http://www.photond.com .
  31. S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel.Top. Quant. Electron. 16(1), 316–324 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited