OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 19 — Sep. 12, 2011
  • pp: 18671–18677

Noncontact optical detection of explosive particles via photodissociation followed by laser-induced fluorescence

C. M. Wynn, S. Palmacci, R. R. Kunz, and M. Aernecke  »View Author Affiliations

Optics Express, Vol. 19, Issue 19, pp. 18671-18677 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1106 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



High-sensitivity (ng/cm2) optical detection of the explosive 2,4,6-trinitrotoluene (TNT) is demonstrated using photodissociation followed by laser-induced fluorescence (PD-LIF). Detection occurs rapidly, within 6 laser pulses (~7 ns each) at a range of 15 cm. Dropcasting is used to create calibrated samples covering a wide range of TNT concentrations; and a correspondence between fractional area covered by TNT and PD-LIF signal strength is observed. Dropcast data are compared to that of an actual fingerprint. These results demonstrate that PD-LIF could be a viable means of rapidly and remotely scanning surfaces for trace explosive residues.

© 2011 OSA

OCIS Codes
(190.4180) Nonlinear optics : Multiphoton processes
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.3420) Remote sensing and sensors : Laser sensors
(300.2530) Spectroscopy : Fluorescence, laser-induced

ToC Category:

Original Manuscript: June 23, 2011
Revised Manuscript: August 8, 2011
Manuscript Accepted: August 10, 2011
Published: September 9, 2011

C. M. Wynn, S. Palmacci, R. R. Kunz, and M. Aernecke, "Noncontact optical detection of explosive particles via photodissociation followed by laser-induced fluorescence," Opt. Express 19, 18671-18677 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Mostak, in Vapour and Trace Detection of Explosives for Anti-Terrorism Purposes: NATO Science Series II. Mathematics, Physics, and Chemistry – Vol. 167 M. Krausa and A. A. Reznev ed. (Kluwer Academic Publishers, Netherlands, 2004) pp. 23–30.
  2. S. Grossman, “Determination of 2,4,6-trinitrotoluene surface contamination on M107 artillery projectiles and sampling method evaluation,” Proc. SPIE 5794, 717–723 (2005). [CrossRef]
  3. J. C. Oxley, J. L. Smith, E. Resende, E. Pearce, and T. Chamberlain, “Trends in explosive contamination,” J. Forensic Sci. 48(2), 334–342 (2003). [PubMed]
  4. T. Tamiri, R. Rozin, N. Lemberger, and J. Almog, “Urea nitrate, an exceptionally easy-to-make improvised explosive: studies towards trace characterization,” Anal. Bioanal. Chem. 395(2), 421–428 (2009). [CrossRef] [PubMed]
  5. K. Yaeger, in Trace Chemical Sensing of Explosives R. Woodfin, ed. (Wiley, NY, 2007) Chap. 3.
  6. D. S. Moore, “Instrumentation for trace detection of high explosives,” Rev. Sci. Instrum. 75, 2499–2512 (2004). [CrossRef]
  7. A. Mukherjee, S. Von der Porten, C. K. Patel, and N. Patel, “Standoff detection of explosive substances at distances of up to 150 m,” Appl. Opt. 49(11), 2072–2078 (2010). [CrossRef] [PubMed]
  8. J. I. Steinfeld and J. Wormhoudt, “Explosives detection: a challenge for physical chemistry,” Annu. Rev. Phys. Chem. 49(1), 203–232 (1998). [CrossRef] [PubMed]
  9. National Research Council, Existing and Potential Standoff Explosive Detection Techniques (The National Academies Press, 2004).
  10. T. Arusi-Parpar, D. Heflinger, and R. Lavi, “Photodissociation followed by laser-induced fluorescence at atmospheric pressure and 24 degrees C: a unique scheme for remote detection of explosives,” Appl. Opt. 40(36), 6677–6681 (2001). [CrossRef] [PubMed]
  11. D. Helfinger, T. Arusi-Parpar, Y. Ron, and R. Lavi, “Application of a unique scheme for remote detection of explosives,” Opt. Commun. 204(1-6), 327–331 (2002). [CrossRef]
  12. C. M. Wynn, S. Palmacci, R. R. Kunz, K. Clow, and M. Rothschild, “Detection of condensed-phase explosives via laser-induced vaporization, photodissociation, and resonant excitation,” Appl. Opt. 47(31), 5767–5776 (2008). [CrossRef] [PubMed]
  13. C. M. Wynn, S. Palmacci, R. R. Kunz, and M. Rothschild, “Noncontact detection of homemade explosive constituents via photodissociation followed by laser-induced fluorescence,” Opt. Express 18(6), 5399–5406 (2010). [CrossRef] [PubMed]
  14. P. Meakin, “Droplet deposition growth and coalescence,” Rep. Prog. Phys. 55(2), 157–240 (1992). [CrossRef]
  15. J. R. Verkouteren, J. L. Coleman, and I. Cho, “Automated mapping of explosives particles in composition C-4 fingerprints,” J. Forensic Sci. 55(2), 334–340 (2010). [CrossRef] [PubMed]
  16. S. Wallin, A. Pettersson, H. Ostmark, and A. Hobro, “Laser-based standoff detection of explosives: a critical review,” Anal. Bioanal. Chem. 395(2), 259–274 (2009). [CrossRef] [PubMed]
  17. M. Abdelhamid, F. J. Fortes, M. A. Harith, and J. J. Laserna, “Analysis of explosive residues in human fingerprints using optical catapulting-laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 26(7), 1445–1450 (2011). [CrossRef]
  18. C. M. Wynn, S. Palmacci, R. R. Kunz, J. J. Zayhowski, B. Edwards, and M. Rothschild, “Experimental demonstration of remote detection of trace explosives,” Proc. SPIE 6954, 695407, 695407-8 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited