OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 19 — Sep. 12, 2011
  • pp: 18713–18720

Reduced radiation losses in electron beam excited propagating plasmons

Lei Wang, Wei Cai, Yinxiao Xiang, Xinzheng Zhang, Jingjun Xu, and F. Javier García de Abajo  »View Author Affiliations


Optics Express, Vol. 19, Issue 19, pp. 18713-18720 (2011)
http://dx.doi.org/10.1364/OE.19.018713


View Full Text Article

Enhanced HTML    Acrobat PDF (3894 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Except for heating losses in metal, propagating plasmons also suffer a lot from radiation losses. In this paper, electron beams are proposed as a way to excite higher-order, multipolar plasmons, which would otherwise not be excited by light, as a way to reduce radiation losses. Specifically, electron excited guided plasmons in a coupled nanoparticle chain and a symmetrical four-wire waveguide are separately discussed. In the coupled nanoparticle chain, the plasmon mode formed by quadrupolar polarized particles with low radiation is efficiently coupled by electron beams. Meanwhile, in the four-wire waveguide, the excited plasmons with zero momentum in the cross-section of each wire possess longer propagating distance than other higher-order plasmons.

© 2011 OSA

OCIS Codes
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: July 6, 2011
Revised Manuscript: August 24, 2011
Manuscript Accepted: August 25, 2011
Published: September 9, 2011

Citation
Lei Wang, Wei Cai, Yinxiao Xiang, Xinzheng Zhang, Jingjun Xu, and F. Javier García de Abajo, "Reduced radiation losses in electron beam excited propagating plasmons," Opt. Express 19, 18713-18720 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-19-18713


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London)424, 824–830 (2003). [CrossRef]
  2. P. Berini, “Plasmon-polariton waves guided by thin lossy metal filsm of finite width: bound modes of symmetric structures,” Phys. Rev. B61, 10484–10503 (2000). [CrossRef]
  3. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laleut, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature (London)440, 508–511 (2006). [CrossRef]
  4. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett.100, 023901 (2008). [CrossRef] [PubMed]
  5. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2, 229–232 (2003). [CrossRef] [PubMed]
  6. A. Manjavacas and F. J. García de Abajo, “Robust plasmon waveguides in strongly interacting nanowire arrays,” Nano. Lett.9, 1285–1289 (2009). [CrossRef]
  7. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2, 496–500 (2008). [CrossRef]
  8. M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano. Lett.6, 1113–1115 (2006). [CrossRef] [PubMed]
  9. J. T. van Wijngaarden, E. Verhagen, A. Polman, C. E. Ross, H. J. Lezec, and H. A. Atwater, “Direct imaging of propagation and damping of near-resonance surface plasmon polaritons using cathodoluminescence spectroscopy,” Appl. Phys. Lett.88, 221111 (2006). [CrossRef]
  10. W. Cai, R. Sainidou, J. Xu, A. Polman, and F. J. García de Abajo, “Efficient generation of propagating plasmons by electron beams,” Nano. Lett.9, 1176–1181 (2009). [CrossRef] [PubMed]
  11. W. Cai, L. Wang, X. Zhang, J. Xu, and F. J. García de Abajo, “Controllable excitation of gap plasmons by electron beams in metallic nanowire pairs,” Phys. Rev. B82, 125454 (2010). [CrossRef]
  12. F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys.82, 209–275 (2010). [CrossRef]
  13. N. Yamamoto, K. Araya, and F. J. García de Abajo, “Photon emission from silver particles induced by a high-energy electron beam,” Phys. Rev. B64, 205419 (2001). [CrossRef]
  14. R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev.106, 874–881 (1957). [CrossRef]
  15. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  16. F. J. García de Abajo and A. Howie, “Relativistic electron energy loss and electron-induced photon emission in lymphogenous dielectrics,” Phys. Rev. Lett.80, 5180–5183 (1998). [CrossRef]
  17. F. J. García de Abajo, “Multiple scattering of radiation in clusters of dielectrics,” Phys. Rev. B60, 6086–6102 (1999). [CrossRef]
  18. F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B65, 115418 (2002). [CrossRef]
  19. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  20. W. Cai, L. Wang, Y. Xiang, X. Zhang, J. Xu, and F. J. García de Abajo are preparing a paper to be called “Propagating dark plasmons generation by electron beams.”
  21. P. C. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  22. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302, 419–422 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited