OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 1072–1080

Planar terahertz waveguides based on complementary split ring resonators

Gagan Kumar, Albert Cui, Shashank Pandey, and Ajay Nahata  »View Author Affiliations

Optics Express, Vol. 19, Issue 2, pp. 1072-1080 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1026 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally demonstrate planar plasmonic THz waveguides using metal films that are periodically perforated with complementary split ring resonators (CSRRs). The waveguide transmission spectra exhibit numerous transmission resonances. While the geometry is commonly used in developing negative index materials, the excitation geometry used here does not allow for conventional metamaterial response. Instead, we show that all of the observed resonances can be determined from the geometrical properties of the CSRR apertures. Surprisingly, the Bragg condition does not appear to limit the frequency extent of the observed resonances. The results suggest that metamaterial-inspired geometries may be useful for developing THz guided-wave devices.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves
(260.3090) Physical optics : Infrared, far
(160.1245) Materials : Artificially engineered materials
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:

Original Manuscript: October 26, 2010
Revised Manuscript: December 20, 2010
Manuscript Accepted: January 5, 2011
Published: January 10, 2011

Gagan Kumar, Albert Cui, Shashank Pandey, and Ajay Nahata, "Planar terahertz waveguides based on complementary split ring resonators," Opt. Express 19, 1072-1080 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004). [CrossRef] [PubMed]
  2. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005). [CrossRef]
  3. J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94(19), 197401 (2005). [CrossRef] [PubMed]
  4. S. A. Maier and S. R. Andrews, “Terahertz pulse propagation using Plasmon-polariton-like surface modes on structures conductive surface,” Appl. Phys. Lett. 88(25), 251120 (2006). [CrossRef]
  5. Z. Ruan and M. Qiu, “Slow electromagnetic wave guided in subwavelength region along one-dimensional periodically structured metal surface,” Appl. Phys. Lett. 90(20), 201906 (2007). [CrossRef]
  6. Y. Shin, J. So, J. Won, and G. Park, “Frequency-dependent refractive index of one-dimensionally structured thick metal film,” Appl. Phys. Lett. 91(3), 031102 (2007). [CrossRef]
  7. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008). [CrossRef]
  8. W. Zhu, A. Agrawal, and A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Express 16(9), 6216–6226 (2008). [CrossRef] [PubMed]
  9. W. Zhu, A. Agrawal, A. Cui, G. Kumar, and A. Nahata. “Engineering the propagation properties of planar plasmonic terahertz waveguides,” IEEE J. Sel. Top. Quantum Electron. (2010), in print.
  10. A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett. 34(13), 2063–2065 (2009). [CrossRef] [PubMed]
  11. D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010). [CrossRef] [PubMed]
  12. W. Zhao, O. M. Eldaiki, R. Yang, and Z. Lu, “Deep subwavelength waveguiding and focusing based on designer surface plasmons,” Opt. Express 18(20), 21498–21503 (2010). [CrossRef] [PubMed]
  13. V. G. Veselago, “The electrodynamics of substances with simultaneously negative value of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968). [CrossRef]
  14. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999). [CrossRef]
  15. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000). [CrossRef] [PubMed]
  16. M. Navarro-Cía, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express 17(20), 18184–18195 (2009). [CrossRef] [PubMed]
  17. B. Reinhard, O. Paul, R. Beigang, and M. Rahm, “Experimental and numerical studies of terahertz surface waves on a thin metamaterial film,” Opt. Lett. 35(9), 1320–1322 (2010). [CrossRef] [PubMed]
  18. W. Zhu, A. Agrawal, and A. Nahata, “Direct measurement of the Gouy phase shift for surface plasmon-polaritons,” Opt. Express 15(16), 9995–10001 (2007). [CrossRef] [PubMed]
  19. A. Nahata and W. Zhu, “Electric field vector characterization of terahertz surface plasmons,” Opt. Express 15(9), 5616–5624 (2007). [CrossRef] [PubMed]
  20. D. R. Smith, J. Gollub, J. J. Mock, W. J. Padilla, and D. Schurig, “Calculation and measurement of bianisotropy in a split ring resonator metamaterial,” J. Appl. Phys. 100(2), 024507 (2006). [CrossRef]
  21. R. Yang, Y. Xie, X. Yang, R. Wang, and B. Chen, “Fundamental modal properties of SRR metamaterials and metamaterial based waveguiding structures,” Opt. Express 17(8), 6101–6117 (2009). [CrossRef] [PubMed]
  22. N. Marcuvitz, Waveguide Handbook (New York: McGraw-Hill, 1951).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited