OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 1091–1100

Investigation on wide-band scattering of a 2-D target above 1-D randomly rough surface by FDTD method

Juan Li, Li-Xin Guo, Yong-Chang Jiao, and Ke Li  »View Author Affiliations

Optics Express, Vol. 19, Issue 2, pp. 1091-1100 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1265 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Finite-difference time-domain (FDTD) algorithm with a pulse wave excitation is used to investigate the wide-band composite scattering from a two-dimensional(2-D) infinitely long target with arbitrary cross section located above a one-dimensional(1-D) randomly rough surface. The FDTD calculation is performed with a pulse wave incidence, and the 2-D representative time-domain scattered field in the far zone is obtained directly by extrapolating the currently calculated data on the output boundary. Then the 2-D wide-band scattering result is acquired by transforming the representative time-domain field to the frequency domain with a Fourier transform. Taking the composite scattering of an infinitely long cylinder above rough surface as an example, the wide-band response in the far zone by FDTD with the pulsed excitation is computed and it shows a good agreement with the numerical result by FDTD with the sinusoidal illumination. Finally, the normalized radar cross section (NRCS) from a 2-D target above 1-D rough surface versus the incident frequency, and the representative scattered fields in the far zone versus the time are analyzed in detail.

© 2011 OSA

OCIS Codes
(290.5880) Scattering : Scattering, rough surfaces

ToC Category:

Original Manuscript: November 12, 2010
Revised Manuscript: December 18, 2010
Manuscript Accepted: December 20, 2010
Published: January 10, 2011

Juan Li, Li-Xin Guo, Yong-Chang Jiao, and Ke Li, "Investigation on wide-band scattering of a 2-D target above 1-D randomly rough 
surface by FDTD method," Opt. Express 19, 1091-1100 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Thorsos, “The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum,” J. Acoust. Soc. Am. 83(1), 78–92 (1988). [CrossRef]
  2. C. Bourlier and N. Pinel, “Numerical implementation of local unified models for backscattering from random rough sea surfaces,” Waves in Random and Complex Media 19(3), 455–479 (2009). [CrossRef]
  3. T. M. Elfouhaily and C. A. Guérin, “A critical survey of approximate scattering wave theories from random rough surfaces,” Waves Random Media 14(4), R1–R40 (2004). [CrossRef]
  4. N. Geng, A. Sullivan, and L. Carin, “Fast multipole method for scattering from an arbitrary PEC target above or buried in a lossy half space,” IEEE Trans. Antenn. Propag. 49(5), 740–748 (2001). [CrossRef]
  5. B. Hu and W. C. Chew, “Fast inhomogeneous plane wave algorithm for scattering from objects above the multilayered medium,” IEEE Trans. Geosci. Rem. Sens. 47, 3399–3405 (2009).
  6. X. Wang and L. W. Li, “Numerical characterization of bistatic scattering from PEC cylinder partially embedded in a dielectric rough surface interface: horizontal polarization,” Prog. Electromagn. Res. 91, 35–51 (2009). [CrossRef]
  7. X. D. Wang, Y. B. Gan, and L. W. Li, “Electromagnetic scattering by partially buried PEC cylinder at the dielectric rough surface interface: TM Case,” IEEE Antennas Wirel. Propag. Lett. 2(22), 319–322 (2003). [CrossRef]
  8. Y. Zhang, J. Lu, J. Pacheco, C. D Jr, C. O Moss, T. M Ao, Grzegorczyk, and J. A Kong, “Mode-expansion method for calculating electromagnetic waves scattered by objects on rough ocean surfaces,” IEEE Trans. Antenn. Propag. 53(5), 1631–1639 (2005). [CrossRef]
  9. D. Colak, R. J. Burkholder, and E. H. Newman, “Multiple sweep method of moments analysis of electromagnetic scattering from 3D targets on ocean-like rough surfaces,” Microw. Opt. Technol. Lett. 49(1), 241–247 (2007). [CrossRef]
  10. G. Kubické, C. Bourlier, and J. Saillard, “Scattering from canonical objects above a sea-like one-dimensional rough surface from a rigorous fast method,” Waves Random Complex Media 20(1), 156–178 (2010). [CrossRef]
  11. T. Lu, W. Cai, and P. Zhang, “Discontinuous galerkin time-domain method for GPR simulation in dispersive media,” IEEE Trans. Geosci. Rem. Sens. 43(1), 72–80 (2005). [CrossRef]
  12. J. T. Johnson and R. J. Burkholder, “A study of scattering from an object below a rough surface,” IEEE Trans. Geosci. Rem. Sens. 42(1), 59–66 (2004). [CrossRef]
  13. F. Frezza, P. Martinelli, L. Pajewski, and G. Schettini, “Short-pulse electromagnetic scattering by buried perfectly conducting cylinders,” IEEE Trans. Geosci. Remote Sens. Lett. 4(4), 611–615 (2007). [CrossRef]
  14. J. Li, L. X. Guo, and H. Zeng, “FDTD investigation on bistatic scattering from two-dimensional rough surface with UPML absorbing condition,” Waves Random Complex Media 19(3), 418–429 (2009). [CrossRef]
  15. J. Li, L. X. Guo, H. Zeng, and X. B. Han, “Message-passing-interface-based parallel FDTD investigation on the EM scattering from a 1-D rough sea surface using uniaxial perfectly matched layer absorbing boundary,” J. Opt. Soc. Am. A 26(6), 1494–1502 (2009). [CrossRef]
  16. J. Li, L. X. Guo, and H. Zeng, “FDTD investigation on bistatic scattering from a target above two-layered rough surfaces using UPML absorbing condition,” Prog. Electromagn. Res. 88, 197–211 (2008). [CrossRef]
  17. J. Li, L. X. Guo, and H. Zeng, “FDTD investigation on the electromagnetic scattering from a target above a randomly rough a sea surface,” Waves Random Complex Media 18(4), 641–650 (2008). [CrossRef]
  18. L. X. Guo, J. Li, and H. Zeng, “Bistatic scattering from a three-dimensional object above a two-dimensional randomly rough surface modeled with the parallel FDTD approach,” J. Opt. Soc. Am. A 26(11), 2383–2392 (2009). [CrossRef]
  19. Y. Kuga and P. Phu, “Experimental studies of millimeter wave scattering in discrete random media and from rough surfaces,” Prog. Electromagn. Res. 14, 37–88 (1996).
  20. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time- Domain Method (Boston: Artech House, 2005).
  21. J. S. Juntunen and T. D. Tsiboukis, “Reduction of numerical dispersion in FDTD method through artificial anisotropy,” IEEE Trans. Microw. Theory Tech. 48(4), 582–588 (2000). [CrossRef]
  22. A. K. Fung, M. R. Shah, and S. Tjuatja, “Numerical simulation of scattering from three- dimensional randomly rough surfaces,” IEEE Trans. Geosci. Rem. Sens. 32(5), 986–994 (1994). [CrossRef]
  23. I. Ahmed, E. Li, and K. Krohne, “Convolutional perfectly matched layer for an unconditionally stable LOD-FDTD method,” IEEE Microw. Wirel. Compon. Lett. 17(12), 816–818 (2007). [CrossRef]
  24. R. J. Luebbers, K. S. Kunz, M. Schneider, and F. Hunsberger, “A Finite-Difference Time-Domain near zone to far zone transformation,” IEEE Trans. Antenn. Propag. 39(4), 429–433 (1991). [CrossRef]
  25. R. Luebbers, D. Ryan, and J. Beggs, “A two-dimensional time-domain near-zone to far-zone transformation,” IEEE Trans. Antenn. Propag. 40(7), 848–851 (1992). [CrossRef]
  26. J. A. Kong, Electromagnetic Wave Theory (New York: Wiley, 1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited