OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 1122–1130

High efficiency coupling of Terahertz micro-ring quantum cascade lasers to the low-loss optical modes of hollow metallic waveguides

Miriam S. Vitiello, Ji-Hua Xu, Mirgender Kumar, Fabio Beltram, Alessandro Tredicucci, Oleg Mitrofanov, Harvey E. Beere, and David A. Ritchie  »View Author Affiliations


Optics Express, Vol. 19, Issue 2, pp. 1122-1130 (2011)
http://dx.doi.org/10.1364/OE.19.001122


View Full Text Article

Enhanced HTML    Acrobat PDF (2128 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate that azimuthally polarized surface emitting Terahertz quantum cascade lasers fabricated in a micro-ring resonator geometry can be coupled to cylindrical hollow aluminum waveguides reaching efficiencies as high ≈98%, when a collimating lens is used. By placing the waveguide in close contact with the QCL in a simple back-to-back geometry, the laser mode can be perfectly matched with the low loss TE01 waveguide mode showing attenuation losses as low as ≈2.3-2.7 dB/m at 3.2 THz.

© 2011 OSA

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3560) Lasers and laser optics : Lasers, ring
(230.7370) Optical devices : Waveguides
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: November 29, 2010
Revised Manuscript: December 22, 2010
Manuscript Accepted: December 22, 2010
Published: January 10, 2011

Citation
Miriam S. Vitiello, Ji-Hua Xu, Mirgender Kumar, Fabio Beltram, Alessandro Tredicucci, Oleg Mitrofanov, Harvey E. Beere, and David A. Ritchie, "High efficiency coupling of Terahertz micro-ring quantum cascade lasers to the low-loss optical modes of hollow metallic waveguides," Opt. Express 19, 1122-1130 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-1122


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. R. Gao, J. N. Hovenier, Z. Q. Yang, J. J. A. Baselmans, A. Baryshev, M. Hajenius, T. M. Klapwijk, A. J. L. Adam, T. O. Klaassen, B. S. Williams, S. Kumar, Q. Hu, J. L. Reno, “Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer,” Appl. Phys. Lett. 86(24), 244104 (2005). [CrossRef]
  2. H. W. Hübers, S. Pavlov, A. Semenov, R. Köhler, L. Mahler, A. Tredicucci, H. Beere, D. Ritchie, E. Linfield, “Terahertz quantum cascade laser as local oscillator in a heterodyne receiver,” Opt. Express 13(15), 5890–5896 (2005). [CrossRef] [PubMed]
  3. A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, J. L. Reno, “Real-time terahertz imaging over a standoff distance (>25 meters),” Appl. Phys. Lett. 89(14), 141125 (2006). [CrossRef]
  4. S. Kumar, A. W. M. Lee, “Resonant-phonon terahertz quantum-cascade lasers and video-rate terahertz imaging,” IEEE J. Sel. Top. Quantum Electron. 14(2), 333–344 (2008). [CrossRef]
  5. B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007). [CrossRef]
  6. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002). [CrossRef] [PubMed]
  7. M. I. Amanti, M. Fischer, C. Walther, G. Scalari, J. Faist, “Horn antennas for terahertz quantum cascade lasers,” Electron. Lett. 43(10), 573–574 (2007). [CrossRef]
  8. W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, H. E. Beere, D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse-electromagnetic-horn antenna,” Appl. Phys. Lett. 93(18), 183508 (2008). [CrossRef]
  9. A. Wei Min Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, J. L. Reno, “High-power and high-temperature THz quantum-cascade lasers based on lens-coupled metal-metal waveguides,” Opt. Lett. 32(19), 2840–2842 (2007). [CrossRef] [PubMed]
  10. Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, A. G. Davies, “Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions,” Nature 457(7226), 174–178 (2009). [CrossRef] [PubMed]
  11. M. I. Amanti, M. Fischer, G. Scalari, M. Beck, J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3(10), 586–590 (2009). [CrossRef]
  12. S. Kumar, B. S. Williams, Q. Qin, A. W. Lee, Q. Hu, J. L. Reno, “Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides,” Opt. Express 15(1), 113–128 (2007). [CrossRef] [PubMed]
  13. J. A. Fan, M. A. Belkin, F. Capasso, S. Khanna, M. Lachab, A. G. Davies, E. H. Linfield, “Surface emitting terahertz quantum cascade laser with a double-metal waveguide,” Opt. Express 14(24), 11672–11680 (2006). [CrossRef] [PubMed]
  14. L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, “High-power surface emission from terahertz distributed feedback lasers with a dual-slit unit cell,” Appl. Phys. Lett. 96(19), 191109 (2010). [CrossRef]
  15. L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics 3(1), 46–49 (2009). [CrossRef]
  16. L. Mahler, M. I. Amanti, C. Walther, A. Tredicucci, F. Beltram, J. Faist, H. E. Beere, D. A. Ritchie, “Distributed feedback ring resonators for vertically emitting terahertz quantum cascade lasers,” Opt. Express 17(15), 13031–13039 (2009). [CrossRef] [PubMed]
  17. E. Mujagić, C. Deutsch, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, K. Unterrainer, G. Strasser, “Vertically emitting terahertz quantum cascade ring lasers,” Appl. Phys. Lett. 95(1), 011120 (2009). [CrossRef]
  18. H. Han, H. Park, M. Cho, J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634–2636 (2002). [CrossRef]
  19. K. Wang, D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004). [CrossRef] [PubMed]
  20. M. Mbonye, R. Mendis, D. M. Mittleman, “A Terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett. 95(23), 233506 (2009). [CrossRef]
  21. R. W. McGowan, G. Gallot, D. Grischkowsky, “Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Opt. Lett. 24(20), 1431–1433 (1999). [CrossRef]
  22. T. Hidaka, H. Minamide, H. Ito, S. Maeta, and T. Akiyama, “Ferroelectric PVDF cladding terahertz waveguide,” in Optical Information, Data Processing and Storage, and Laser Communication Technologies J.-P. Goedgebuer, N. N.Rozanov, S. K. Turitsyn, A. S. Akhmanov, and V. Y. Panchenko, eds., Proc. SPIE 5135, 70–77 (2003).
  23. J. A. Harrington, R. George, P. Pedersen, E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12(21), 5263–5268 (2004). [CrossRef] [PubMed]
  24. B. Bowden, J. A. Harrington, O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93(18), 181104 (2008). [CrossRef]
  25. T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, H. Ito, “Flexible Terahertz fiber optics with low bending-induced losses,” J. Opt. Soc. Am. B 24(5), 1230 (2007). [CrossRef]
  26. T. Losco, J. Xu, R. P. Green, A. Tredicucci, H. E. Beere, D. A. Ritchie, “THz quantum cascade designs for optimized injection,” Physica E 40(6), 2207–2209 (2008). [CrossRef]
  27. B. Bowden, J. A. Harrington, O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32(20), 2945–2947 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited