OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 1138–1146

Internal temperature measurement of an ytterbium doped material under laser operation

J. Petit, B. Viana, and Ph. Goldner  »View Author Affiliations

Optics Express, Vol. 19, Issue 2, pp. 1138-1146 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (847 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Temperature of the pumped volume of an ytterbium doped material has been measured while laser action is taking place. This is achieved by recording green emissions at 530 and 550 nm from Er3+ impurities. These emissions result from energy transfer upconversion processes between Yb3+ and Er3+. Experiments performed on a Yb3+:CaGdAlO4 crystal show the effect of pump power and laser wavelength on the sample internal temperature. Temperature variation along the sample length has also been measured. This method can complement data obtained by thermal cameras which can only access surface temperatures in most laser materials.

© 2011 Optical Society of America

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(160.5690) Materials : Rare-earth-doped materials

ToC Category:
Lasers and Laser Optics

Original Manuscript: December 2, 2010
Manuscript Accepted: December 20, 2010
Published: January 10, 2011

J. Petit, B. Viana, and Ph. Goldner, "Internal temperature measurement of an ytterbium doped material under laser operation," Opt. Express 19, 1138-1146 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Boulon, “Why so deep research on Yb3+-doped optical inorganic materials? ” J. Alloy. Comp. 451, 1–11 (2008). [CrossRef]
  2. P. Russbueldt, T. Mans, G. Rotarius, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “400W Yb:YAG Innoslab fs-amplifier,” Opt. Express 17, 12230–12245 (2009). [CrossRef] [PubMed]
  3. S. Bowman, S. O’Connor, S. Biswal, N. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron. 46, 1076–1085 (2010). [CrossRef]
  4. S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials lasers,” Prog. Quantum Electron. 30, 89–153 (2006). [CrossRef]
  5. S. Chénais, S. Forget, F. Druon, F. Balembois, and P. Georges, “Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb: YAG,” Appl. Phys. B 79, 221–224 (2004). [CrossRef]
  6. J. Petit, B. Viana, P. Goldner, D. Vivien, P. Louiseau, and B. Ferrand, “Laser oscillation with low quantum defect in Yb:GdVO4, a crystal with high thermal conductivity,” Opt. Lett. 29, 833–835 (2004). [CrossRef] [PubMed]
  7. J. Petit, P. Goldner, and B. Viana, “Laser emission with low quantum defect in Yb:CaGdAlO4,” Opt. Lett. 30, 1345–1347 (2005). [CrossRef] [PubMed]
  8. M. Eichhorn, “Thermal lens effects in an Er3+:YAG laser with crystalline fiber geometry,” Appl. Phys. B 94, 451–457 (2009). [CrossRef]
  9. C. Kränkel, J. Johannsen, R. Peters, K. Petermann, and G. Huber, “Continuous-wave high power laser operation and tunability of Yb:LaSc3(BO3)4 in thin disk configuration,” Appl. Phys. B 87, 217–220 (2007). [CrossRef]
  10. J. Boudeile, J. Didierjean, P. Camy, J. L. Doualan, A. Benayad, V. Ménard, R. Moncorgé, F. Druon, F. Balembois, and P. Georges, “Thermal behaviour of ytterbium-doped fluorite crystals under high power pumping,” Opt. Express 16, 10098–10109 (2008). [CrossRef] [PubMed]
  11. J. Didierjean, E. Herault, F. Balembois, and P. Georges, “Thermal conductivity measurements of laser crystals by infrared thermography. Application to Nd:doped crystals,” Opt. Express 16, 8995–9010 (2008). [CrossRef] [PubMed]
  12. L. Aigouy, G. Tessier, M. Mortier, and B. Charlot, “Scanning thermal imaging of microelectronic circuits with a fluorescent nanoprobe,” Appl. Phys. Lett. 87, 184105 (2005).
  13. H. Berthou, and C. K. Jörgensen, “Optical-fiber temperature sensor based on upconversion-excited fluorescence,” Opt. Lett. 15, 1100–1102 (1990). [CrossRef] [PubMed]
  14. M. A. R. C. Alencar, G. S. Maciel, C. B. de Araújo, and A. Patra, “Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84, 4753–4755 (2004). [CrossRef]
  15. B. Dong, D. P. Liu, X. J. Wang, T. Yang, S. M. Miao, and C. R. Li, “Optical thermometry through infrared excited green upconversion emissions in Er3+–Yb3+ codoped Al2O3,” Appl. Phys. Lett. 90, 181117 (2007).
  16. F. Auzel, “Compteur quantique par transfert d’énergie entre deux ions de terres rares dans un tungstate mixte et dans un verre,” C.R. Acad. Sci. Paris 262, 1016–1019 (1966).
  17. J. C. Wright, “Up-conversion and excited state energy transfer in rare-earth doped materials,” in “Radiationless Processes in Molecules and Condensed Phases,”, vol. 15 of Topics in Applied Physics, F. K. Fong, ed. (Springer, Berlin, 1976), chap. 4, pp. 239–295. [CrossRef]
  18. G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, and R. I. Epstein, “Determination of spectral linewidths by Voigt profiles in Yb3+-doped fluorozirconate glasses,” Phys. Rev. B 57, 7673–7678 (1998). [CrossRef]
  19. P. Goldner, B. Schaudel, and M. Prassas, “Dependence of cooperative luminescence intensity on Yb3+ spatial distribution in crystals and glasses,” Phys. Rev. B 65, 054103 (2002). [CrossRef]
  20. E. Nakazawa, and S. Shionoya, “Cooperative luminescence in YbPO4,” Phys. Rev. Lett. 25, 1710–1712 (1970). [CrossRef]
  21. F. Auzel, “Compteur quantique par transfert d’énergie de Yb3+ à Tm3+ dans un tungstate mixte et dans un verre germanate,” C.R. Acad. Sci. Paris 263, 819–821 (1966).
  22. Ph. Goldner, M. Fesquet, and F. Auzel, “Spatial domains in avalanche-pumped erbium-doped fluoride fiber,” J. Opt. Soc. Am. B 15, 2668–2673 (1998). [CrossRef]
  23. C. M. Lawson, R. C. Powell, and W. K. Zwicker, “Transient grating investigation of exciton diffusion and fluorescence quenching in NdxLa1−xP5O14 crystals,” Phys. Rev. B 26, 4836–4844 (1982). [CrossRef]
  24. J. A. Hutchinson, H. R. Verdun, B. H. T. Chai, B. Zandi, and L. D. Merkie, “Spectroscopic evaluation of CaYA1O4 doped with trivalent Er, Tm, Yb and Ho for eyesafe laser applications,” Opt. Mater. 3, 287–306 (1994). [CrossRef]
  25. J. C. Souriau, C. Borel, Ch. Wyon, C. Li, and R. Moncorgé, “Spectroscopic properties and fluorescence dynamics of Er3+ and Yb3+ in CaYA1O4,” J. Lumin. 59, 349–359 (1994). [CrossRef]
  26. . J. Boudeile, J. Didierjean, F. Balembois, F. Druon, P. Georges, J. Petit, P. Goldner and B. Viana, “High power diode pumped Yb3+:CaGdAlO4 laser,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper WE28.
  27. S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin and P. Georges,“Thermal Lensing in Diode-Pumped Ytterbium Lasers–Part II: Evaluation of Quantum Efficiencies and Thermo-Optic Coefficients,” IEEE J. Quantum Electron. 40, 1235–1243 (2004). [CrossRef]
  28. J. Petit, PhD thesis, Universit’e Pierre et Marie Curie, Paris (2006).
  29. S. Yiou, F. Balembois, and P. Georges, “Numerical modeling of a continuous-wave Yb-doped bulk crystal laser emitting on a three-level laser transition near 980 nm,” J. Opt. Soc. Am. B 22, 572–581 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited