OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 1207–1216

Deterministic generation of multiparticle entanglement in a coupled cavity-fiber system

Peng-Bo Li and Fu-Li Li  »View Author Affiliations


Optics Express, Vol. 19, Issue 2, pp. 1207-1216 (2011)
http://dx.doi.org/10.1364/OE.19.001207


View Full Text Article

Enhanced HTML    Acrobat PDF (782 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We develop a one-step scheme for generating multiparticle entangled states between two cold atomic clouds in distant cavities coupled by an optical fiber. We show that, through suitably choosing the intensities and detunings of the fields and precisely tuning the time evolution of the system, multiparticle entanglement between the separated atomic clouds can be engineered deterministically, in which quantum manipulations are insensitive to the states of the cavity and losses of the fiber. The experimental feasibility of this scheme is analyzed based on recent experimental advances in the realization of strong coupling between cold 87Rb clouds and fiber-based cavity. This scheme may open up promising perspectives for implementing quantum communication and networking with coupled cavities connected by optical fibers.

© 2011 Optical Society of America

OCIS Codes
(270.5580) Quantum optics : Quantum electrodynamics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: October 26, 2010
Revised Manuscript: November 15, 2010
Manuscript Accepted: November 26, 2010
Published: January 11, 2011

Citation
Peng-Bo Li and Fu-Li Li, "Deterministic generation of multiparticle entanglement in a coupled cavity-fiber system," Opt. Express 19, 1207-1216 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-1207


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. S. Bell, “On the einstein-podolsky-rosen paradox,” Phys. 1, 195–200 (1964).
  2. D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys. 58, 1131–1143 (1990). [CrossRef]
  3. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge 2000).
  4. W. Dur, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314 (2000). [CrossRef]
  5. H. J. Briegel and R. Raussendorf, “Persistent entanglement in arrays of interacting particles,” Phys. Rev. Lett. 86, 910–913 (2001). [CrossRef] [PubMed]
  6. For a review see,K. Hammerer, A. S. Sorensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010) (and references therein). [CrossRef]
  7. For a review see, L.-M. Duan, and C. Monroe, “Colloquium: Quantum networks with trapped ions,” Rev. Mod. Phys. 82, 1209–1224 (2010) (and references therein). [CrossRef]
  8. R. Blatt and D. Wineland, “Entangled states of trapped atomic ions,” Nature 453, 1008–1015 (2008). [CrossRef]
  9. For a review see, D. Jaksch, and P. Zoller, “The cold atom Hubbard toolbox,” Ann. Phys. 315, 52–79 (2005) (and references therein). [CrossRef]
  10. H. J. Kimble, “Strong interactions of single atoms and photons in cavity QED,” Phys. Scr. T 76, 127–137 (1998). [CrossRef]
  11. H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in Context,” Science 298, 1372–1377 (2002). [CrossRef] [PubMed]
  12. J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221–3224 (1997). [CrossRef]
  13. A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98, 193601 (2007).
  14. E. Solano, G. S. Agarwal, and H. Walther, “Strong-driving-assisted multipartite entanglement in cavity QED,” Phys. Rev. Lett. 90, 027903 (2003). [CrossRef] [PubMed]
  15. P.-B. Li, Y. Gu, Q.-H. Gong, and G.-C. Guo, “Quantum-information transfer in a coupled resonator waveguide,” Phys. Rev. A 79, 042339 (2009). [CrossRef]
  16. F. Mei, M. Feng, Y.-F. Yu, and Z.-M. Zhang, “Scalable quantum information processing with atomic ensembles and flying photons,” Phys. Rev. A 80, 042319 (2009). [CrossRef]
  17. P.-B. Li, Y. Gu, Q.-H. Gong, and G.-C. Guo, “Generation of two-mode entanglement between separated cavities,” J. Opt. Soc. Am. B 26, 189–193 (2009). [CrossRef]
  18. S. Kang, Y. Choi, S. Lim, W. Kim, J.-R. Kim, J.-H. Lee, and K. An, “Continuous control of the coupling constant in an atom-cavity system by using elliptic polarization and magnetic sublevels,” Opt. Express 18, 9286–9302 (2010). [CrossRef] [PubMed]
  19. H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008). [CrossRef]
  20. Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007). [CrossRef]
  21. M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87, 211106 (2005). [CrossRef]
  22. D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hansch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” N. J. Phys. 12, 065038 (2010). [CrossRef]
  23. T. Pellizzari, “Quantum networking with optical fibres,” Phys. Rev. Lett. 79, 5242–5245 (1997). [CrossRef]
  24. A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006). [CrossRef] [PubMed]
  25. Z. Q. Yin and F. L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75, 012324 (2007). [CrossRef]
  26. P. Peng and F. L. Li, “Entangling two atoms in spatially separated cavities through both photon emission and absorption processes,” Phys. Rev. A 75, 062320 (2007). [CrossRef]
  27. Y. L. Zhou, Y. M. Wang, L. M. Liang, and C. Z. Li, “Quantum state transfer between distant nodes of a quantum network via adiabatic passage,” Phys. Rev. A 79, 044304 (2009). [CrossRef]
  28. J. Busch and A. Beige, “Generating single-mode behavior in fiber-coupled optical cavities,” arXiv:1009.1011v2 (2010).
  29. X.-Y. Lu, P.-J. Song, J.-B. Liu, and X. Yang, “N-qubit W state of spatially separated single molecule magnets,” Opt. Express 17, 14298–14311 (2010). [CrossRef]
  30. K. T. Kapale and J. P. Dowling, “Bootstrapping approach for generating maximally path-entangled photon states,” Phys. Rev. Lett. 99, 053602 (2007). [CrossRef] [PubMed]
  31. T. Brandes, “Coherent and collective quantum optical effects in mesoscopic systems,” Phys. Rep. 408, 315–474 (2005). [CrossRef]
  32. D. F. V. James, “Quantum computation with hot and cold ions: an assessment of proposed schemes,” Fortschr. Phys. 48, 823–837 (2000). [CrossRef]
  33. A. Sørensen and K. Mølmer, “Entanglement and quantum computation with ions in thermal motion,” Phys. Rev. A 62, 022311 (2000). [CrossRef]
  34. S. L. Zhu, Z. D. Wang, and P. Zanardi, “Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity,” Phys. Rev. Lett. 94, 100502 (2005). [CrossRef] [PubMed]
  35. K. Mølmer and A. Sørensen, “Multiparticle entanglement of hot trapped ions,” Phys. Rev. Lett. 82, 1835–1838 (1999). [CrossRef]
  36. K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003–1025 (1997). [CrossRef]
  37. I. E. Linington and N. V. Vitanov, “Decoherence-free preparation of Dicke states of trapped ions by collective stimulated Raman adiabatic passage,” Phys. Rev. A 77, 062327 (2008). [CrossRef]
  38. R. Schack and T. A. Brun, “A C++ library using quantum trajectories to solve quantum master equations,” Comput. Phys. Commun. 102, 210–228 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited