OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 1310–1323

Large positive and negative lateral shifts near pseudo-Brewster dip on reflection from a chiral metamaterial slab

Y. Y. Huang, W. T. Dong, L. Gao, and C. W. Qiu  »View Author Affiliations

Optics Express, Vol. 19, Issue 2, pp. 1310-1323 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1530 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The lateral shifts from a slab of lossy chiral metamaterial are predicted for both perpendicular and parallel components of the reflected field, when the transverse electric (TE)-polarized incident wave is applied. By introducing different chirality parameter, the lateral shifts can be large positive or negative near the pseudo-Brewster angle. It is found that the lateral shifts from the negative chiral slab are affected by the angle of incidence and the chirality parameter. In the presence of inevitable loss of the chiral slab, the enhanced lateral shifts will be decreased, and the pseudo-Brewster angle will disappear correspondingly. For the negative chiral slab with loss which is invisible for the right circularly polarized (RCP) wave, we find that the loss of the chiral slab will lead to the fluctuation of the lateral shift with respect to the thickness of the chiral slab. The validity of the stationary-phase analysis is demonstrated by numerical simulations of a Gaussian-shaped beam.

© 2011 Optical Society of America

OCIS Codes
(120.5700) Instrumentation, measurement, and metrology : Reflection
(260.0260) Physical optics : Physical optics
(260.2110) Physical optics : Electromagnetic optics
(350.5500) Other areas of optics : Propagation
(160.1585) Materials : Chiral media
(160.3918) Materials : Metamaterials

ToC Category:
Physical Optics

Original Manuscript: December 2, 2010
Revised Manuscript: January 7, 2011
Manuscript Accepted: January 10, 2011
Published: January 11, 2011

Y. Y. Huang, W. T. Dong, L. Gao, and D. W. Qiu, "Large positive and negative lateral shifts near pseudo-Brewster dip on reflection from a chiral metamaterial slab," Opt. Express 19, 1310-1323 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Goos, and H. Hänchen, "Ein neuer und fundamentaler Versuch zur Totalreflexion," Ann. Phys. 1, 333-346 (1947). [CrossRef]
  2. K. Artmann, "Berechnung der Seitenversetzung des totalreflektierten Strahles," Ann. Phys. 2, 87-102 (1948). [CrossRef]
  3. R. H. Renard, "Total reflection: a new evaluation of the Goos-Hänchen shift," J. Opt. Soc. Am. 54, 1190-1196 (1964). [CrossRef]
  4. B. R. Horowitz, and T. Tamir, "Lateral displacement of a light beam at a dielectric interface," J. Opt. Soc. Am. 61, 586-594 (1971). [CrossRef]
  5. F. Bretenaker, A. Le Floch, and L. Dutriaux, "Direct measurement of the optical Goos-Hänchen effect in lasers," Phys. Rev. Lett. 68, 931-933 (1992). [CrossRef] [PubMed]
  6. O. Emile, T. Galstyan, A. Le Floch, and F. Bretenaker, "Measurement of the nonlinear Goos-Hänchen effect for Gaussian optical beams," Phys. Rev. Lett. 75, 1511-1513 (1995). [CrossRef] [PubMed]
  7. B. M. Jost, A. A. R. Al-Rashed, and B. E. A. Saleh, "Observation of the Goos-Hänchen effect in a phase conjugate mirror," Phys. Rev. Lett. 81, 2233-2235 (1998). [CrossRef]
  8. A. Madrazo, and M. Nieto-Veperinas, "Detection of subwavelength Goos-Hänchen shifts from near-field intensities: a numerical simulation," Opt. Lett. 20, 2445-2447 (1995). [CrossRef] [PubMed]
  9. L. G. Wang, H. Chen, N. H. Liu, and S. Y. Zhu, "Negative and positive lateral shift of a light beam reflected from a grounded slab," Opt. Lett. 31, 1124-1126 (2006). [CrossRef] [PubMed]
  10. C. F. Li, "Negative lateral shift of a light beam transmitted through a dielectric slab and interaction of boundary effects," Phys. Rev. Lett. 91, 133903 (2003). [CrossRef] [PubMed]
  11. M. Merano, A. Aiello, C. W. Hooft, M. P. van Exter, E. R. Eliel, and J. P. Woerdman, "Observation of Goos-Hänchen shifts in metallic reflection," Opt. Express 15, 15928-15934 (2007). [CrossRef] [PubMed]
  12. D. J. Hoppe, and Y. Rahmat-Samii, "Gaussian beam reflection at a dielectric-chiral interface," J. Electromagn. Waves Appl. 6, 603-624 (1992).
  13. R. A. Depine, and N. E. Bonomo, "Goos-Hänchen lateral shift for Gaussian beams reflected at achiral-chiral interfaces," Optik 103, 37-41 (1996).
  14. F. Wang, and A. Lakhtakia, "Lateral shifts of optical beams on reflection by slanted chiral sculptured thin films," Opt. Commun. 235, 107-132 (2004). [CrossRef]
  15. W. T. Dong, L. Gao, and C. W. Qiu, "Goos-Hänchen shift at the surface of chiral negative refractive media," Prog. Electromagn. Res., PIER 104, 255-263 (2009). [CrossRef]
  16. W. J. Wild, and C. L. Giles, "Goos-Hänchen shifts from absorbing media," Phys. Rev. A 25, 2099-2101 (1982). [CrossRef]
  17. E. Pfleghaar, A. Marseille, and A. Weis, "Quantitative investigation of the effect of resonant absorbers on the Goos-Hänchen Shift," Phys. Rev. Lett. 70, 2281-2284 (1993). [CrossRef] [PubMed]
  18. B. Zhao, and L. Gao, "Temperature-dependent Goos-Hänchen shift on the interface of metal/dielectric composites," Opt. Express 17, 21433-21441 (2009). [CrossRef] [PubMed]
  19. F. Lima, T. Dumelow, J. A. P. Costa, and E. L. Albuquerque, "Lateral shift of far infrared radiation on normal incidence reflection off an antiferromagnet," Europhys. Lett. 83, 17003 (2008). [CrossRef]
  20. P. R. Berman, "Goos-Hänchen shift in negatively refractive media," Phys. Rev. E 66, 067603 (2002). [CrossRef]
  21. J. A. Kong, B. K. Wu, and Y. Zhang, "Lateral displacement of a Gaussian beam reflected from a grounded slab with negative permittivity and permeability," Appl. Phys. Lett. 80, 2084-2086 (2002). [CrossRef]
  22. A. Lakhtakia, "On planewave remittances and Goos-Hänchen shifts of planar slabs with negative real permittivity and permeability," Electromagnetics 23, 71-75 (2003). [CrossRef]
  23. D. R. Pendry, "A chiral route to negative refraction," Science 306, 1353-1355 (2004). [CrossRef] [PubMed]
  24. C. W. Qiu, N. Burokur, S. Zouhdi, and L. W. Li, "Chiral nihility effects on energy flow in chiral materials," J. Opt. Soc. Am. A 25, 53-63 (2008). [CrossRef]
  25. C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and S. T. Yeo, "Backward waves in magnetoelectrically chiral media: propagation, impedance and negative refraction," Phys. Rev. B 75, 155120 (2007). [CrossRef]
  26. S. Zhang, Y. S. Park, J. S. Li, X. C. Lu, W. L. Zhang, and X. Zhang, "Negative refractive index in chiral metamaterials," Phys. Rev. Lett. 102, 023901 (2009). [CrossRef] [PubMed]
  27. J. F. Zhou, J. F. Dong, N. B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, "Negative refractive index due to chirality," Phys. Rev. B 79, 121104 (2009). [CrossRef]
  28. I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media (Artech House, Boston) (1994).
  29. J. F. Dong, and B. Liu, "Goos-Hänchen shift at the surface of the chiral negative refraction medium," Proceedings of the 2008 International workshop on metamaterials, Nanjing, China, 98-101 (2008).
  30. S. Bassiri, C. H. Papas, and N. Engheta, "Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab," J. Opt. Soc. Am. A 5, 1450-1459 (1988). [CrossRef]
  31. S. Bassiri, C. H. Papas, and N. Engheta, "Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab: errata," J. Opt. Soc. Am. A 7, 2154-2155 (1990). [CrossRef]
  32. M. McGuirk, and C. K. Carniglia, "An angular spectrum representation approach to the Goos-Hänchen shift," J. Opt. Soc. Am. 67, 103-107 (1977). [CrossRef]
  33. M. Cheng, R. Chen, and S. Feng, "Lateral shifts of an optical beam in an anisotropic metamaterial slab," Eur. Phys. J. D 50, 81-85 (2008). [CrossRef]
  34. H. Huang, Y. Fan, B. I. Wu, and J. A. Kong, "Positively and negatively large Goos-Hänchen lateral displacement from a symmetric gyrotropic slab," Appl. Phys. A 94, 917-922 (2009). [CrossRef]
  35. Y. Tamayama, T. Nakanishi, K. Sugiyama, and M. Kitano, "An invisible medium for circularly polarized electromagnetic waves," Opt. Express 16, 20869-20875 (2008). [CrossRef] [PubMed]
  36. C. F. Li, and Q. Wang, "Prediction of simultaneously large and opposite generalized Goos-Hänchen shifts for TE and TM light beams in an asymmetric double-prism configuration," Phys. Rev. E 69, 055601 (2004). [CrossRef]
  37. Y. Jin, and S. L. He, "Focusing by a slab of chiral medium," Opt. Express 13, 4974-4979 (2005). [CrossRef] [PubMed]
  38. Q. Cheng, and T. J. Cui, "Negative refractions in uniaxially anisotropic chiral media," Phys. Rev. B 73, 113104 (2006). [CrossRef]
  39. T. G. Mackay, and A. Lakhtakia, "Negative refraction, negative phase velocity, and counterposition in bianisotropic materials and metamaterials," Phys. Rev. B 79, 235121 (2009). [CrossRef]
  40. C. W. Qiu, H. Y. Yao, L. W. Li, T. S. Yeo, and S. Zouhdi, "Routes to left-handed media by magnetoelectric couplings," Phys. Rev. B 75, 245214 (2007). [CrossRef]
  41. H. M. Lai, and S. W. Chan, "Large and negative Goos-Hänchen shift near the Brewster dip on reflection from weakly absorbing media," Opt. Lett. 27, 680-682 (2002). [CrossRef]
  42. K. Yu. Bliokh, and Yu. P. Bliokh, "Polarization, transverse shifts, and angular momentum conservation laws in partical reflection and refraction of an electromagnetic wave packet," Phys. Rev. E 75, 066609 (2007). [CrossRef]
  43. C. F. Li, "Unified theory for Goos-Hänchen and Imbert-Fedorov effects," Phys. Rev. A 76, 013811 (2007). [CrossRef]
  44. A. Aiello, and J. P. Woerdman, "Role of beam propagation in Goos-Hänchen and Imbert-Fedorov shifts," Opt. Lett. 33, 1437-1439 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited