OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 1324–1334

Optical coherence tomography by using frequency measurements in wavelength domain

Hon Luen Seck, Ying Zhang, and Yeng Chai Soh  »View Author Affiliations

Optics Express, Vol. 19, Issue 2, pp. 1324-1334 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (787 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical coherence tomography (OCT) reconstruction by using frequency measurements in the wavelength domain is presented in this paper. The method directly recovers the axial scan by formulating the frequency domain OCT (FD-OCT) into an algebraic reconstruction problem. In this way, the need for interpolation is removed. Then by solving the problem with ℓ1 optimization, the computational load is significantly reduced. It is demonstrated by experiment and simulation that the proposed method can achieve high resolution and longer imaging depth compared to the FD-OCT method.

© 2011 Optical Society of America

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(110.4500) Imaging systems : Optical coherence tomography
(350.5730) Other areas of optics : Resolution

ToC Category:
Imaging Systems

Original Manuscript: April 19, 2010
Revised Manuscript: December 19, 2010
Manuscript Accepted: December 28, 2010
Published: January 12, 2011

Virtual Issues
Vol. 6, Iss. 2 Virtual Journal for Biomedical Optics

Hon Luen Seck, Ying Zhang, and Yeng Chai Soh, "Optical coherence tomography by using frequency measurements in wavelength domain," Opt. Express 19, 1324-1334 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef] [PubMed]
  2. O. P. Bruno, and J. Chaubell, “Inverse scattering problem for optical coherence tomography,” Opt. Lett. 28, 2049–2051 (2003). [CrossRef] [PubMed]
  3. P. E. Andersen, L. Thrane, H. T. Yura, A. Tycho, T. M. Jørgensen, and M. H. Frosz, “Advanced modelling of optical coherence tomography systems,” Phys. Med. Biol. 49, 1307–1327 (2004). [CrossRef] [PubMed]
  4. G. Häusler, and M. W. Lindner, “‘Coherence radar’ and ‘spectral radar’–new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998). [CrossRef]
  5. M. E. Brezinski, Optical Coherence Tomography: Principles and Applications (Academic Press,2006).
  6. C. Dorrer, N. Belabas, J. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier-transform spectral interferometry,” J. Opt. Soc. Am. B 17, 1795–1802 (2000). [CrossRef]
  7. S. S. Sherif, C. Flueraru, Y. Mao, and S. Change, “Swept source optical coherence tomography with nonuniform frequency domain sampling,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), paper BMD86.
  8. D. Hillmann, G. Huttmann, and P. Koch, “Using nonequispaced fast Fourier transformation to process optical coherence tomography signals,” Proc. of SPIE-OSA Biomedical Optics 7372, 73730 (2009).
  9. S. Vergnole, D. Lvesque, and G. Lamouche, “Experimental validation of an optimized signal processing method to handle non-linearity in swept-source optical coherence tomography,” Opt. Express 18, 10446–10461 (2010). [CrossRef] [PubMed]
  10. A. C. Kak, and M. Slaney, “Algebraic reconstruction algorithms,” in Principles of Computerized Tomographic Imaging (IEEE Press, 1999).
  11. S. Vergnole, D. Levesque, G. Lamouche, M. Dufour, and B. Gauthier, “Characterization of thin layered structures using deconvolution techniques in time-domain and Fourier-domain optical coherence tomography,” Proc. SPIE 6796, 67961 (2007). [CrossRef]
  12. S. A. Boppart, A. L. Oldenburg, C. Xu, and D. L. Marks, “Optical probes and techniques for molecular contrast enhancement in coherence imaging,” J. Biomed. Opt. 10, 041208 (2005). [CrossRef]
  13. M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, “Compressed sensing MRI,” IEEE Signal Process. Mag. 25, 72–82 (2008). [CrossRef]
  14. E. J. Candès, and T. Tao, “Decoding by linear programming,” IEEE Trans. Inf. Theory 51, 4203–4215 (2005). [CrossRef]
  15. M. Grant, and S. Boyd, CVX: Matlab software for disciplined convex programming (web page and software). http://stanford.edu/eboyd/cvx (2009).
  16. W. Qiu, and E. Skafidas, “Robust estimation of GCD with sparse coefficients,” Signal Process. 90, 972–976 (2010). [CrossRef]
  17. G. H. Golub, and C. F. Van Loan, Matrix computations (Johns Hopkins University Press, 1984).
  18. M. S. Muller, and J. M. Fraser, “Contrast improvement in Fourier-domain optical coherence tomography through time gating,” J. Opt. Soc. Am. A 26, 969–976 (2009). [CrossRef]
  19. K. Wang, Z. Ding, T. Wu, C. Wang, J. Meng, M. Chen, and L. Xu, “Development of a non-uniform discrete Fourier transform based high speed spectral domain optical coherence tomography system,” Opt. Express 17, 12121–12131 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited