OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 1335–1343

Light coupling and enhanced backscattering in layered plasmonic nanocomposites

Olivier Deparis, Martynas Beresna, Cédric Vandenbem, and Peter G. Kazansky  »View Author Affiliations


Optics Express, Vol. 19, Issue 2, pp. 1335-1343 (2011)
http://dx.doi.org/10.1364/OE.19.001335


View Full Text Article

Enhanced HTML    Acrobat PDF (1092 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Peculiar enhanced backscattering of light as well as selective vapor sensing were recently observed in a layered plasmonic nanocomposite which consisted of gold nanospheres randomly distributed in a sol-gel glass thin film on top of a soda-lime glass substrate, including a buried leaky waveguide. In order to understand the underlying physical mechanisms, we performed three-dimensional transfer-matrix numerical simulations and calculated the reflectance in both backward and specular directions as functions of the incidence angle. First, assuming a layered periodic particle arrangement, we confirmed that backscattering took place at grazing incidence if the spatial period in the layers was chosen within an optimal range, in agreement with theoretical predictions. Then, using a pseudo-random particle arrangement to describe the actual nanocomposite, we revealed that strong backscattering could nevertheless persist for specific particle distributions, in spite of their randomness. This behavior was tentatively explained by putting backscattering in relation with the particle interdistance statistics. Finally, we showed that backscattered reflectance was much more sensitive than specular reflectance to the adsorption of water vapor either on the surface or inside the likely porous structure of the glass host.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(290.1350) Scattering : Backscattering
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Scattering

History
Original Manuscript: September 14, 2010
Manuscript Accepted: December 16, 2010
Published: January 12, 2011

Virtual Issues
Vol. 6, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Olivier Deparis, Martynas Beresna, Cédric Vandenbem, and Peter G. Kazansky, "Light coupling and enhanced backscattering in layered plasmonic nanocomposites," Opt. Express 19, 1335-1343 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-1335


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008). [CrossRef] [PubMed]
  2. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007). [CrossRef]
  3. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer-Verlag, New-York, 2007).
  4. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008). [CrossRef] [PubMed]
  5. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008). [CrossRef] [PubMed]
  6. M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length and sensing capabilities of the loacalized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123(7), 1471–1482 (2001). [CrossRef]
  7. T. Rindzevicius, Y. Alaverdyan, M. Käll, W. A. Murray, and W. L. Barnes, “Long-range refractive index sensing using plasmonic nanostructures,” J. Phys. Chem. C 111(32), 11806–11810 (2007). [CrossRef]
  8. S. Szunerits, M. R. Das, and R. Boukherroub, “Short- and long-range sensing on gold nanostructures, deposited on glass, coated with silicon oxide films of different thicknesses,” J. Chem. Phys. C 112(22), 8239–8243 (2008). [CrossRef]
  9. S. Cheng, Y. Wei, Q. Feng, K.-Y. Qiu, J.-B. Pang, S. A. Jansen, R. Yin, and K. Ong, “Facile synthesis of mesoporous gold-silica nanocomposite materials via sol-gel process with nonsurfactant templates,” Chem. Mater. 15(7), 1560–1566 (2003). [CrossRef]
  10. M. Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55(24), 2692–2695 (1985). [CrossRef] [PubMed]
  11. P. E. Wolf and G. Maret, “Weak localization and coherent backscattering of photons in disordered media,” Phys. Rev. Lett. 55(24), 2696–2699 (1985). [CrossRef] [PubMed]
  12. F. Pincemin, A. Sentennac, and J.-J. Greffet, “Backscattering enhancement by subsurface particles,” Opt. Commun. 114(1-2), 13–17 (1995). [CrossRef]
  13. A. V. Zayats, I. I. Smolyaninov, and A. A. Mardudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005). [CrossRef]
  14. J.-J. Greffet, “Backscattering of s-polarized light from cloud of small particles above a dielectric substrate,” Waves Random Media 1(3), 65–73 (1991). [CrossRef]
  15. M. Beresna, O. Deparis, I. C. S. Carvalho, S. Takahashi, A. V. Zayats, and P. G. Kazansky, “Poling-assisted fabrication of plasmonic nanocomposite devices in glass,” Adv. Mater. 22(39), 4368–4372 (2010). [CrossRef] [PubMed]
  16. J. B. Pendry, “Photonic band structures,” J. Mod. Opt. 41(2), 209–229 (1994). [CrossRef]
  17. D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999). [CrossRef]
  18. J.-Y. Li, Y.-L. Hua, J.-X. Fu, and Z.-Y. Li, “Influence of hole geometry and lattice constant on extraordinary optical transmission through subwavelength hole arrays in metal films,” J. Appl. Phys. 107(7), 073101 (2010). [CrossRef]
  19. S. Fraden and G. Maret, “Multiple light scattering from concentrated, interacting suspensions,” Phys. Rev. Lett. 65(4), 512–515 (1990). [CrossRef] [PubMed]
  20. L. F. Rojas-Ochoa, J. M. Mendez-Alcaraz, J. J. Sáenz, P. Schurtenberger, and F. Scheffold, “Photonic properties of strongly correlated colloidal liquids,” Phys. Rev. Lett. 93(7), 073903 (2004). [CrossRef] [PubMed]
  21. N. J. Tao, S. Boussaas, W. L. Huang, R. A. Arechabaleta, and J. D’Agnese, “High resolution surface plasmon resonance spectroscopy,” Rev. Sci. Instrum. 70(12), 4656–4660 (1999). [CrossRef]
  22. J. H. Holtz and S. A. Asher, “Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials,” Nature 389(6653), 829–832 (1997). [CrossRef]
  23. V. S.-Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited