OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 1367–1377

Complete single-shot measurement of arbitrary nanosecond laser pulses in time

Pamela Bowlan and Rick Trebino  »View Author Affiliations


Optics Express, Vol. 19, Issue 2, pp. 1367-1377 (2011)
http://dx.doi.org/10.1364/OE.19.001367


View Full Text Article

Enhanced HTML    Acrobat PDF (1138 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

For essentially all applications, laser pulses must avoid variations in their intensity and phase within a pulse and from pulse to pulse. Currently available devices work very well for both long (>10ns) and short (<100ps) pulses. But intermediate (~ns) pulses remain difficult to measure and, not surprisingly, are the least stable. Here we describe a simple, elegant, complete, all-optical, single-shot device that measures ~ns pulses and that does not require a reference pulse or assumptions about the pulse shape. It simultaneously achieves a very high spectral resolution of <1pm and a very large delay range of ~10ns (several meters of light travel). It accomplishes both goals using high-efficiency, high-finesse etalons: one to generate high angular dispersion for a high-resolution spectrometer, and another to tilt the pulse front by ~89.9° without distorting it in time. Using this device, we completely measure microchip and fiber-amplifier pulses.

© 2011 OSA

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology

ToC Category:
Ultrafast Optics

History
Original Manuscript: October 18, 2010
Revised Manuscript: December 13, 2010
Manuscript Accepted: December 14, 2010
Published: January 12, 2011

Citation
Pamela Bowlan and Rick Trebino, "Complete single-shot measurement of arbitrary nanosecond laser pulses in time," Opt. Express 19, 1367-1377 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-1367


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. Giordmaine, P. M. Rentzepis, S. L. Shapieo, and K. W. Wecht, “Two-Photon Excitation of Fluorescence By Picosecond Light Pulses,” Appl. Phys. Lett. 11(7), 216–218 (1967). [CrossRef]
  2. K. L. Sala, G. A. Kenney-Wallace, and G. E. Hall, “CW Autocorrelation Measurements of Picosecond Laser Pulses,” IEEE J. Quantum Electron. 16(9), 990–996 (1980). [CrossRef]
  3. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic Publishers, Boston, 2002).
  4. D. J. Kane and R. Trebino, “Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating,” Opt. Lett. 18(10), 823–825 (1993). [CrossRef] [PubMed]
  5. R. Trebino and D. J. Kane, “Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating,” J. Opt. Soc. Am. A 10(5), 1101–1111 (1993). [CrossRef]
  6. G. Taft, A. Rundquist, M. M. Murnane, H. C. Kapteyn, K. W. Delong, R. Trebino, and I. P. Christov, “Ultrashort optical waveform measurements using frequency-resolved optical gating,” Opt. Lett. 20(7), 743–745 (1995). [CrossRef] [PubMed]
  7. M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. B. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414(6863), 509–513 (2001). [CrossRef] [PubMed]
  8. F. Quéré, Y. Mairesse, and J. Itatani, “Temporal characterization of attosecond XUV fields,” J. Mod. Opt. 52(2), 339–360 (2005). [CrossRef]
  9. S. A. Diddams, L. Hollberg, L.-S. Ma, and L. Robertsson, “Femtosecond-laser-based optical clockwork with instability < 6.3 x 10−16 in 1 s,” Opt. Lett. 27(1), 58–60 (2002). [CrossRef]
  10. F. Di Teodoro and C. D. Brooks, “1.1 MW peak-power, 7 W average-power, high-spectral-brightness, diffraction-limited pulses from a photonic crystal fiber amplifier,” Opt. Lett. 30(20), 2694–2696 (2005). [CrossRef] [PubMed]
  11. C. D. Brooks and F. Di Teodoro, “Multimegawatt peak-power, single-transverse-mode operation of a 100 m core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119 (2006). [CrossRef]
  12. H. Fuchs, D. Woll, T. Ulm, and J. A. L'Huillier, “High resolution FROG system for the characterization of ps laser pulses,” Appl. Phys. 88(3), 393–396 (2007). [CrossRef]
  13. J. M. Dudley, C. Finot, D. J. Richardson, and G. Millot, “Self-similarity in ultrafast nonlinear optics,” Nat. Phys. 3(9), 597–603 (2007). [CrossRef]
  14. C. Finot, G. Millot, C. Billet, and J. M. Dudley, “Experimental generation of parabolic pulses via Raman amplification in optical fiber,” Opt. Express 11(13), 1547–1552 (2003). [CrossRef] [PubMed]
  15. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27(13), 1174–1176 (2002). [CrossRef]
  16. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008). [CrossRef] [PubMed]
  17. D. H. Broaddus, M. A. Foster, O. Kuzucu, A. C. Turner-Foster, K. W. Koch, M. Lipson, and A. L. Gaeta, “Temporal-imaging system with simple external-clock triggering,” Opt. Express 18(13), 14262–14269 (2010). [CrossRef] [PubMed]
  18. C. Dorrer and I. Kang, “Linear self-referencing techiques for short-optical-pulse characterization,” J. Opt. Soc. Am. B 25(6), A1–A12 (2008). [CrossRef]
  19. C. Dorrer and I. Kang, “Simultaneous characterization of telecommunication optical pulses and modulators by use of spectrograms,” Opt. Lett. 27, 1315–1317 (2002). [CrossRef]
  20. J. Bromage, C. Dorrer, I. A. Begishev, N. G. Usechak, and J. D. Zuegel, “Highly sensitive, single-shot characterization for pulse widths from 0.4 to 85 ps using electro-optic shearing interferometry,” Opt. Lett. 31(23), 3523–3525 (2006). [CrossRef] [PubMed]
  21. D. Reid and J. Harvey, “Linear spectrograms using electrooptic modulators,” IEEE Photon. Technol. Lett. 19(8), 535–537 (2007). [CrossRef]
  22. C. Dorrer, E. M. Kosik, and I. A. Walmsley, “Direct space time-characterization of the electric fields of ultrashort optical pulses,” Opt. Lett. 27(7), 548–550 (2002). [CrossRef]
  23. F. Li, Y. Park, and J. Azaña, “Linear Characterization of Optical Pulses with Durations Ranging From the Picosecond to the Nanosecond Regime Using Ultrafast Photonic Differentiation,” J. Lightwave Technol. 27(21), 4623–4633 (2009). [CrossRef]
  24. M. Shirasaki, “Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer,” Opt. Lett. 21(5), 366–368 (1996). [CrossRef] [PubMed]
  25. M. Born, and E. Wolf, Principles of Optics, 7 ed. (Cambridge University Press, New York, 1999).
  26. P. Bowlan and R. Trebino, “Extreme pulse-front tilt from an etalon,” J. Opt. Soc. Am. B 27(11), 2322–2377 (2010). [CrossRef]
  27. S. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004). [CrossRef]
  28. P. O’Shea, M. Kimmel, X. Gu, and R. Trebino, “Highly simplified device for ultrashort-pulse measurement,” Opt. Lett. 26(12), 932–934 (2001). [CrossRef]
  29. R. Wyatt and E. E. Marinero, “Versatile Single-Shot Background-Free Pulse Duration Measurement Technique for Pulses of Subnanosecond to Picosecond Duration,” Appl. Phys. 25(3), 297–301 (1981). [CrossRef]
  30. Z. Bor, B. Racz, G. Szabo, M. Hilbert, and H. A. Hazim, “Femtosecond pulse front tilt caused by angular dispersion,” Opt. Eng. 32(10), 2501–2504 (1993). [CrossRef]
  31. S. Akturk, X. Gu, P. Gabolde, and R. Trebino, “The general theory of first-order spatio-temporal distortions of Gaussian pulses and beams,” Opt. Express 13(21), 8642–8661 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited